Problemas de caminhos em grafos e Programação Dinâmica

Claudia M. Justel

Instituto Militar de Engenharia, Rio de Janeiro, Brasil

Brazilian ICPC Summer School 2023 - Brazilian Final class

AGENDA

03/02/2023 - AULA 1: Problemas de caminhos em grafos

04/02/2023 - AULA 2: Programação Dinâmica

AULA 2 - Objetivo

Mostrar como varia a a complexidade do pior caso segundo o tipo de problema resolvido usando Programação dinâmica (PD):

- pseudo-polinomial: Coeficiente Binomial O(nk), Mochila Inteiro O(nW),
- ▶ polinomial: Floyd-Warshall $O(n^3)$, Árvore binária de busca de custo ótimo $O(n^3)$,
- exponencial Caixeiro Viajante O(2ⁿ).

AULA 2

Definições:

- ► complexidade do pior caso polinomial O(f(x)) onde x é o tamanho da entrada e f é função polinomial.
- ▶ complexidade do pior caso pseudo-polinomial O(f(x, w)) onde x é o tamanho da entrada, $w = 2^{log(w)}$ é magnitude de números envolvidos na entrada e f é função polinomial.
- ▶ complexidade do pior caso exponencial O(f(x)) onde x é o tamanho da entrada e f é função exponencial.

$$0! = 1, \forall n > 0, n! = n(n-1)!.$$

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

procedimento COMB(n, k)se k = 0 ou k = n então retornar 1 senão retornar COMB(n - 1, k - 1) + COMB(n - 1, k)

Para computar os coeficientes binomiais, vários valores COMB(i,j) são calculados mais de uma vez.

Se utilizarmos um tabela guardando os valores intermediários, pode-se diminuir o cálculo de valores repetidos.

```
procedimento COMB1(n,k)

para i=0,\ldots,n faça C(i,0)=1

para j=1,\ldots,k faça C(0,j)=0

para i=1,\ldots,n faça

para j=1,\ldots k faça

se i>j então C(i,j)=C(i-1,j-1)+C(i-1,j)

senão se i=j então C(i,j)=1

senão C(i,j)=0

retornar C(n,k)
```

EXEMPLO: Calcular $\binom{5}{3}$ usando COMB1. Os cálculos intermediários C(i,j) durante a execução de COMB1 são mostrados na Tabela .

n/k	0	1	2	3
0	1	0	0	0
1	1	1	0	0
2	1	2	1	0
3	1	3	3	1
4	1	4	6	4
5	1	5	10	10

O valor C(5,3) = 10 é a solução dada pela algoritmo para o cálculo de $\binom{5}{3}$.

Neste exemplo de cálculo de coeficiente binomial, não é necessário armazenar a tabela completa com todos os valores C(i,j), $1 \le i \le n$ e $1 \le j \le k$.

Manter um vetor de dimensão k, representando a linha atual, e atualizar os valores de esquerda para direita.

Com esta forma de armazenamento, obtém-se um algoritmo com complexidade do pior caso O(nk) (pseudo-polinomial). O de espaço necessário é O(k) = O(n).

Dados n objetos e uma mochila, onde cada objeto i, $1 \le i \le n$ tem associado um peso w_i e um valor v_i . A mochila carrega peso máximo W. Deseja-se encher a mochila de maneira que a soma dos valores dos objetos incluídos seja máxima e seja respeitada a capacidade da mochila. Neste caso os objetos não podem ser fracionados.

O problema pode ser descrito como:

$$\max \sum_{i=1}^{n} x_i v_i$$
 sujeito a $\sum_{i=1}^{n} x_i w_i \leq W$ $x_i = 0$ ou $1, \forall 1 \leq i \leq n$.

Construir uma matriz $V(n+1) \times (W+1)$.

Se V[i,j] é o máximo valor correspondente ao problema da mochila com capacidade j, considerando únicamente objetos numerados de 1 até i. Sejam

- V[i 1, j]: valor correspondente à solução do problema da mochila com capacidade j e objetos numerados de 1 até i - 1, (não contém o objeto i).
- ▶ $V[i-1,j-w_i] + v_i$: valor correspondente ao problema da mochila contendo o objeto i (cujo peso é $w_i \le j$) e escolhendo objetos numerados 1 até i-1 para capacidade $j-w_i \ge 0$.

Então $V[i,j] = max\{V[i-1,j]; V[i-1,j-w_i] + v_i\}$. E a solução do problema será dada por V[n,W].

```
 \begin{array}{l} \textbf{procedimento MOCHILA INTEIRO} \ (n, \, v, \, w, \, W) \\ para \ j = 0, \dots, \, W \ \textit{faça} \ V[0, \, j] = 0 \\ para \ i = 1, \dots, \, n \ \textit{faça} \\ V[i, \, 0] = 0 \\ para \ j = 1, \dots, \, W \ \textit{faça} \\ se \ w_i \le j \ \textit{então} \\ se \ V[i - 1, j - w_i] + v_i > V[i - 1, j] \ \textit{então} \ V[i, j] = V[i - 1, j - w_i] + v_i \\ sentão \ V[i, j] = V[i - 1, j] \\ sentão \ V[i, j] = V[i - 1, j] \\ retornar \ V[n, W] \end{array}
```

A complexidade do pior caso de MOCHILA INTEIRO é O(nW), onde W é um dos dados que definem a instância do problema (pseudo-polinomial).

Para obter os objetos colocados dentro da mochila que correspondem ao valor máximo, utilizar matriz K.

Se existe objeto k tal que K[i,j] = k, então o objeto k foi o último objeto colocado na mochila na solução do problema V[i,j].

Se não foi preenchido o valor K[i,j], então o último objeto incluido do subproblema V[i,j] e igual ao do subproblema V[i-1,j] que se encontra no elemento K[i-1,j].

```
 \begin{array}{l} \textbf{procedimento MOCHILA INTEIRO1} \ (n, v, w, W) \\ para j = 0, \dots, W \ \textit{faça} \ \textit{V}[0, j] = 0 \\ para i = 1, \dots, n \ \textit{faça} \\ V[i, 0] = 0 \\ para j = 1, \dots, W \ \textit{faça} \\ se \ \textit{w}_i \leq j \ \textit{então} \\ se \ V[i-1, j-w_i] + \textit{v}_i > \textit{V}[i-1, j] \ \textit{então} \ \textit{V}[i, j] = \textit{V}[i-1, j-w_i] + \textit{v}_i \\ se \ \textit{não} \ \textit{V}[i, j] = V[i-1, j] \\ se \ \textit{não} \ \textit{V}[i, j] = V[i-1, j] \\ retornar \ \textit{V}[n, W] \end{array}
```

EXEMPLO: Sejam n = 5, W = 11 e os valores e peso de cada objeto dados na Tabela, entrada do procedimento MOCHILA INTEIRO.

i	Vi	Wi
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

Os cálculos intermediários V[i,j] durante a execução de MOCHILA INTEIRO são mostrados a seguir .

i/j	0	1	2	3	4	5	6	7	8	9	10	11
0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	1	1	1	1	1	1	1	1	1	1
2	0	1	6	7	7	7	7	7	7	7	7	7
3	0	1	6	7	7	18	19	24	25	25	25	25
4	0	1	6	7	7	18	22	24	28	29	29	40
5	0	1	6	7	7	18	22	28	29	34	35	40

O valor V[5, 11] = 40 é a solução dada pela algoritmo para o valor ótimo carregado na mochila, repeitando a capacidade e sem objetos fracionados, utilizando os objetos 3 e 4.

Os valores K[i,j] obtidos durante a execução de MOCHILA INTEIRO são mostrados a seguir .

i/j	0	1	2	3	4	5	6	7	8	9	10	11
0												
1		1	1	1	1	1	1	1	1	1	1	1
2			2	2	2	2	2	2	2	2	2	2
3						3	3	3	3	3	3	3
4								4		4	4	4
5								5	5	5	5	

Partindo do valor K[5, 11] podem ser identificados os objetos que correspondem ao valor mínimo obtido pelo algoritmo.

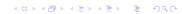
O problema consiste em, dado $S = \{s_1, ..., s_n\}$ conjunto de chaves, $s_1 < ... < s_n$ determinar em quais posições da árvore armazenar as chaves de maneria que a soma do número de comparações total, ou seja o número de comparações para acessar cada chave, seja o menor possível.

Seja T uma árvore binária de busca para $S = \{s_1, ..., s_n\}$ conjunto de chaves.

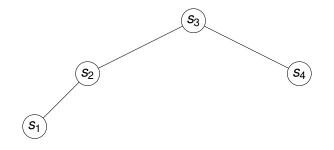
HIPÓTESE 1: frequência de acesso aos nós idêntica

i. Buscas com sucesso

Comprimento do caminho interno da árvore binária de busca T: $I(T) = \sum_{1 \le k \le n} I_k$, onde I_k é o nível do nó com chave s_k (número de comparações necessárias para o acesso à chave s_k).



OBSERVAÇÃO: nível da raiz de T é igual a 1 neste caso.



$$n = 4$$

 $I(T) = 1 + 2 + 2 + 3 = 8$

ii. Buscas sem sucesso

Seja S um conjunto de chaves $S = \{s_1, s_2, ..., s_n\}, s_1 < s_2 < \cdots < s_n$.

As chaves são alocadas nos nós de uma árvore binária de busca T.

Para cada chave s_k , seja l_k o nível que corresponde a s_k em T. O conjunto de números reais pode ser dividido em:

$$(-\infty,s_1),s_1,(s_1,s_2),s_2,....,s_{n-1},(s_{n-1},s_n),s_n,(s_n,\infty)$$

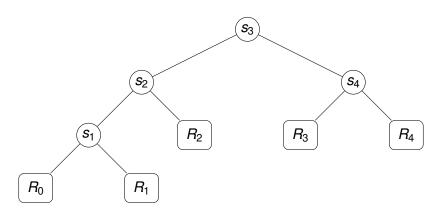
Notamos por:

$$R_0 = (-\infty, s_1),$$

 $R_i = (s_i, s_{i+1}), 1 \le i \le n-1,$
 $R_n = (s_n, \infty).$

 R_k , $0 \le k \le n$ são os nós externos representam as saídas possíveis das buscas sem sucesso na árvore binária de busca

Comprimento do caminho externo da árvore binária de busca T: $E(T) = \sum_{0 \le k \le n} (l'_k - 1)$, onde l'_k é o nível do nó externo R_k (número de comparações necessárias determinar que a chave s_k não está em T).



$$E(T) = 3 + 3 + 2 + 2 + 2 = 12$$

Consideramos agora

HIPÓTESE 2: frequência de acesso aos nós diferenciada

T árvore binária de busca.

$$S$$
 um conjunto de chaves $S = \{s_1, s_2, ..., s_n\}$, $s_1 < s_2 < \cdots < s_n$ com freqüências de acesso $f_1, \ldots f_n$.

As chaves são alocadas nos nós de T.

 \forall 1 \leq $p \leq$ n, $s_p \rightarrow$ freqüência de acesso $= f_p$, nível que corresponde a s_p em $T = I_p$.

 R_0, R_1, \ldots, R_n são os nós externos com freqüências de acesso $f'_0, f'_1, \ldots f'_n$.

 $\forall \ 0 \le p \le n, \ R_p \to \text{com frequencia de acesso} = f_p', \text{ nível correspondente em } T = I_p'.$

Define-se

Comprimento do caminho interno ponderado da árvore binária de busca $T: \sum_{1$

(número total de comparações necessárias para todas as possibilidades de busca com sucesso em ${\it T}$ considerando as chaves com frequências de acesso diferenciadas) (buscas com sucesso).

Comprimento do caminho externo ponderado da árvore binária de busca $T: \sum_{0$

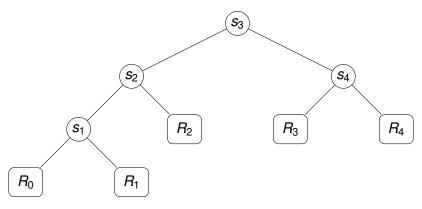
(número total de comparações necessárias para todas as possibilidades de busca sem sucesso em \mathcal{T} considerando as chaves com frequências de acesso diferenciadas) (busca sem sucesso).

Dada uma árvore binária de busca T nas condiçõesda Hipótese 2, c(T) é o número total de comparações necessárias para todas as possiblidades de busca, com e sem sucesso:

$$c(T) = \sum_{1 \leq p \leq n} l_p f_p + \sum_{0 \leq p \leq n} (l_p' - 1) f_p'.$$

Seja n = 4 chaves com freqüências

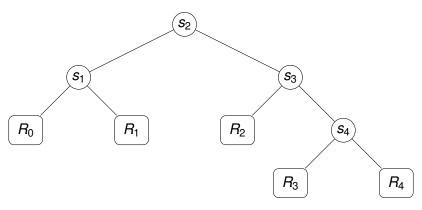
$$f_1 = 10, f_2 = 1, f_3 = 3, f_4 = 2, f_0' = 2, f_1' = 1, f_2' = 1, f_3' = 1, f_4' = 1.$$
 T



$$C(T) = (10.3 + 1.2 + 3.1 + 2.2) + (2.3 + 1.3 + 1.2 + 1.2 + 1.2) = 54.$$

Exemplo: n = 4 chaves com freqüências

$$f_1 = 10, f_2 = 1, f_3 = 3, f_4 = 2, f'_0 = 2, f'_1 = 1, f'_2 = 1, f'_3 = 1, f'_4 = 1.$$
 T'



$$C(T') = (10.2+1.1+3.2+2.3)+(2.2+1.2+1.2+13+1.3) = 47.$$

Dados n, as frequencias f_p , $1 \le p \le n$ e f'_p , $0 \le p \le n$, podemos obter uma árvore binária de busca T para as chaves $s_1 < s_2 < \dots, s_n$ que apresente menor custo C(T) possível?

Lema 1:

As subárvores de uma árvore binária de busca ótima são também ótimas.

Seja T(i,j) a árvore ótima correspondente ao subconjunto de chaves $\{s_{i+1},\ldots,s_j\}$, $0 \le i \le j \le n$. Seja F(i,j) a soma de todas as freqüências correspondentes a T(i,j): $F(i,j) = \sum_{i .$

Lema 2:

Seja T(i,j) a árvore binária de busca ótima de raiz s_k correspondente as chaves $\{s_{i+1},\ldots,s_j\}$, $0 \le i \le j \le n$. Então C(T(i,j)) = C(T(i,k-1)) + C(T(k,j)) + F(i,j).

ENTRADA: $n \in f_1, \ldots, f_n, f'_0, \ldots, f'_n$.

SAÍDA: C(0, n)

procedimento ARVORE BINARIA OTIMA 1(n, f, f', C)

para
$$j = 0, ..., n$$
 faça
$$C[j,j] = 0, F[j,j] = f'_{j}$$
para $d = 1, ..., n$ faça
$$para i = 0, ..., n - d \text{ faça}$$

$$j = i + d$$

$$F[i,j] = F[i,j-1] + f_{j} + f'_{j}$$

$$C[i,j] = min_{i < k < i} \{ C[i,k-1] + C[k,j] \} + F[i,j]$$

A complexidade de ARVORE BINARIA OTIMA 1 é $O(n^3)$.

Para construir a árvore binária com custo ótimo deve ser armazenado o valor de k que efetiviza o mínimo no cálculo de C[i,j] na entrada K[i,j] da matriz K.

```
procedimento ARVORE BINARIA OTIMA 2(n, f, f', C, K) para j = 0, \ldots, n faça C[j,j] = 0, F[j,j] = f'_j para d = 1, \ldots, n faça para i = 0, \ldots, n - d faça j = i + d F[i,j] = F[i,j-1] + f_j + f'_j C[i,j] = \min_{i < k \le j} \{C[i,k-1] + C[k,j]\} + F[i,j] K[i,j] = k
```

EXEMPLO: Seja n = 4, determinar a árvore binária de busca de custo ótimo para as freqüências:

$$f_1 = 10, f_2 = 1, f_3 = 3, f_4 = 2,$$

 $f'_0 = 2, f'_1 = 1, f'_2 = 1, f'_3 = 1, f'_4 = 1.$

No final de ARVORE BINARIA OTIMA 2 obtemos as matrizes $C F \in K$. O custo da árvore binária de busca ótima e C(0,4) = 39 e a raiz da mesma é a chave $s_1 (= K(0,4))$.

$$C = \left(\begin{array}{ccccc} 0 & 13 & 18 & 29 & 39 \\ & 0 & 3 & 10 & 17 \\ & & 0 & 5 & 12 \\ & & & 0 & 4 \\ & & & & 0 \end{array}\right) F = \left(\begin{array}{cccccc} 2 & 13 & 15 & 19 & 22 \\ & 1 & 3 & 7 & 10 \\ & & 1 & 5 & 8 \\ & & & 1 & 4 \\ & & & & 1 \end{array}\right)$$

$$K = \begin{pmatrix} - & 1 & 1 & 1 & 1 \\ - & - & 2 & 3 & 3 \\ - & - & - & 3 & 3 \\ - & - & - & - & 4 \\ - & - & - & - & - \end{pmatrix}$$

AULA 2 - PD Floyd-Warshall

Seja
$$G = (V, E), \forall e \in E, w(e) \in \mathbb{R},$$

```
procedimento FLOYD1(L, D, n)
para i = 1, \dots, n faça
para j = 1 ate n faça D^0[i, j] = L[i, j]
para k = 1, \dots, n faça
para i = 1, \dots, n faça
para j = 1, \dots, n faça
se D^{k-1}[i, k] + D^{k-1}[k, j] < D^{k-1}[i, j] então
D^k[i, j] = D^{k-1}[i, k] + D^{k-1}[k, j]
senão D^k[i, j] = D^{k-1}[i, j]
retornar D^n
```

A complexidade do algoritmo de Floyd é $O(n^3)$.

Quando existir ciclo de comprimento negativo num grafo, o algoritmo de Floyd-Warshall não determina corretamente a solução do problema de caminhos mínimos entre todos os pares de vértices.

Algoritmo de Programação Dinâmica para o Problema do Caixeiro Viajante (TSP) a seguir.

G = (V, E), n = |V|, vértices numerados de 1 até n, $w(i,j) \ge 0, \forall (i,j) \in E$. C a matriz n^2 , $C_{i,j} = w(i,j)$, $(i,j) \in E$.

Algoritmo usando programação dinâmica para TSP. CUSTO-MINIMO: determina o comprimento do ciclo hamiltoniano mínimo.

MELHOR-CH permite reconstruir sequência de vértices no ciclo hamiltoniano de custo mínimo.

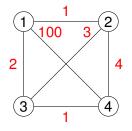
```
procedimento TSP-PD(n, C) para i=2,\ldots,n faga CUSTO[\{i\},i]=C_{1,i}; MELHOR-CAMINHO[\{i\},i]=(1,i) para j=2,\ldots,n-1 faga para S\subseteq \{2,\ldots,n\} tal que |S|=j faça para i\in S faça CUSTO[S,i]=\min_{k\in S-\{i\}} \{\text{CUSTO}[S-\{i\},k]+C_{k,i}\} seja k o vertice que atinge o minimo MELHOR-CAMINHO[S,i]=\text{MELHOR-CAMINHO}[S-\{i\},k]+C_{k,1}\} Seja k o vertice que atinge o minimo MELHOR-CAMINHO[S,i]=\text{MELHOR-CAMINHO}[S-\{i\},k]+C_{k,1}\} Seja k o vertice que atinge o minimo MELHOR-CH=MELHOR-CAMINHO[\{2,\ldots,n\},k\}]/1
```

A complexidade do pior caso de TSP-PD é dada por:

$$\sum_{j=2}^{n-1} \binom{n-1}{j} c j^2 \le c[2^{n-1}(n-1)^2] = O(n^2 2^n),$$

onde *c* é uma constante positiva.

EXEMPLO: Seja $G = K_4$



$$C = (c_{i,j}) = \left[egin{array}{cccc} 0 & 1 & 2 & 100 \ 1 & 0 & 3 & 4 \ 2 & 3 & 0 & 1 \ 100 & 4 & 1 & 0 \end{array}
ight].$$

S	i	CUSTO[S, i]	MELHOR-CAMINHO[S, i]
{1}	1	0	Ø
{2}	2	1	1, 2
{3}	3	2	1, 3
{4}	4	100	1, 4
{2, 3}	2	5 (k = 3)	1, 3, 2
{2, 3}	3	4 (k = 2)	1, 2, 3
{2, 4}	2	104 (k = 4)	1, 4, 2
{2, 4}	4	5(k = 2)	1, 2, 4
{3, 4}	3	101 (k = 4)	1, 4, 3
{3, 4}	4	3 (k = 3)	1, 3, 4
{2, 3, 4}	2	7 (k = 4)	1, 3, 4, 2
{2, 3, 4}	3	6(k = 4)	1, 2, 4, 3
{2, 3, 4}	4	5 (k = 3)	1, 2, 3, 4

CUSTO-MINIMO = $min_{k\neq 1}$ {CUSTO[{2, 3, 4}, k]} + $c_{k,1}$ = 8

$$k = 2$$
, CUSTO[$\{2, 3, 4\}, 2$] $\} + c_{2,1} = 7 + 1 = 8$

$$\textit{k} = \textit{3}, \texttt{CUSTO}[\{\textit{2}, \textit{3}, \textit{4}\}, \textit{3}]\} + \textit{c}_{\textit{3}, \textit{1}} = \textit{6} + \textit{2} = \textit{8}$$

$$k = 4$$
, CUSTO[$\{2, 3, 4\}, 4\}$ $\} + c_{4,1} = 5 + 100 = 105$

Para
$$k=2$$
, MELHOR-CAMINHO[$\{2,3,4\}$, 2] $=1,3,4,2$. MELHOR-CH₁ $=1,3,4,2,1$, $\sum_{(i,j)\in CH_1}c_{i,j}=8$.

Para k=3, MELHOR-CAMINHO[$\{2,3,4\},3\}=1,2,4,3$. MELHOR-CH $_2=1,2,4,3,1,\sum_{(i,j)\in \mathit{CH}_2}c_{i,j}=8$.

AULA 2 - Resumo Fórmulas PD usadas

Problema	Algoritmo Prog. Dinâmica	tam. entrada	complex. pior caso	fórmula
		Cittada	pior odoo	
coeficiente	COMB1(n, k)	n, k	O(n.k)	C(n, k) = C(n-1, k-1) + C(n-1, k)
	00.11.2.1(11, 11.)	''', ''	0(////)	
binomial				
mochila inteiro	MOCHILA INTEIRO	n, W	O(n.W)	V[i,j] =
(não fraccionar)	(n, v, w, W)	l ′	- ()	$\max\{V[i-1,j]; V[i-1,j-w_i]+v_i\}$
_ `			_	
caminhos mínimos	FLOYD(L, D, n)	n	$O(n^3)$	$D^{k}[i,j] =$
(todos os pares)				$min\{D^{k-1}[i,j]; D^{k-1}[i,k] + D^{k-1}[k,j]\}$
árvore binária	ARVORE BINARIA OTIMA	n	$O(n^3)$	C(T(i,j)) =
de busca ótima	(n, f, f', C)		- ()	C(T(i, k-1)) + C(T(k, j)) + F(i, j)
de busca otima	(11, 1 , 1 , 0)			O(T(I,K-1))+O(T(K,J))+T(I,J)
caixeiro viajante	TSP-PD(n, C)	n	$O(n^2 2^n)$	$CUSTO[S, i] = min_{k \in S - \{i\}}$
				$\{CUSTO[S - \{i\}, k] + C_{k,i}\}$

Bibliografia

Cormen, Lieserson, Rivest. *An Introduction to Algorithms*, MIT Press (1990). ISBN 0-262-53091-0.

Brassard, Bratley. *Fundamental of Algorithms*, Prentice Hall (1996). ISBN 0-13-335068-1.

Dasgupta, Papadimitriou, Vazirani. *Algorithms*, McGraw-Hill Higher Education (2008). ISBN 978-0-07-352340-8.

Garey, Johnson. *Computers and Intractability: A guide to the Theory of NP-Completeness*, Freeman (1979). ISBN 0-7167-1044-7.

Bibliografia

Kleinberg, J., Tardos, E. *Algorithm Design*, Addison Wesley (2006) ISBN-10 0-321-29535-8.

Szwactfiter. *Teoria Computacional de Grafos*, Elsevier, (2018). ISBN 978-85-352-8885-8.

Szwarcfiter, Markenzon. *Estruturas de Dados e seus Algoritmos*, LTC (2010). ISBN 85-2161-750-X.

https://www.geeksforgeeks.org/dynamic-programming/?ref=lbp