
Brazilian ICPC Summer School 2022:
5th Contest Solution Outlines

Fidel I. Schaposnik M.

January 29, 2022

This document presents solution outlines for problems included in the
5th contest of the first week of the Brazilian ICPC Summer School of 2022.
Problems are loosely classified in difficulty ranging from 1 to 10, but keep in
mind this is obviously my subjective evaluation which you may not share.
The discussion presented here does not aim to be either detailed or exhaus-
tive, but should be considered only as a rough guide helping you to think
about these problems. As usual, please send any comments or questions to
fidel.s+maratona@gmail.com.

1 Lightbulb Testing

• Subject: parsing

• Difficulty: 8/10

• Solutions during contest: 1

This problem requires parsing the input to simulate the process of turning
the lamp on and off. The grammar is simple, but to avoid implementation
difficulties it is convenient to be extra-tidy and define a structure representing
a sequence of operations, including parameters for “total on-time”, “total off-
time” and “lamp state changes after execution”.

We can naturally define operations for concatenating and repeating these
structures, and use binary search to determine how many repetitions of a
given sequence can be achieved without going over a given total on-time for
the lamp. Execution time shouldn’t be a limiting factor for our solution if
parsing is performed in linear time on the length of the input.

1



2 Vigenère Cipher Encryption

• Subject: ad-hoc

• Difficulty: 1/10

• Solutions during contest: 28

This problem asks us to encrypt a string using the Vigenère cypher. We
should simply apply the procedure described in the problem statement, and
execution time is then linear in the input size.

3 Vigenère Cipher Analysis

• Subject: strings

• Difficulty: 9/10

• Solutions during contest: 1

This problem asks us to determine whether a string S, encrypted using
the Vigènere cypher, can be decrypted without having access to the key
(whose length is bounded by K) if we know two words W1 and W2 which
should be present in the original message.

To solve this problem, we consider all possible key lengths k = 1, . . . , K
and generate all possible keys of length k which are compatible with W1

and W2, considering all possible positions in which these words can appear
in S. The valid keys must be compatible with both W1 and W2, and the
occurrences of these in S should be non-overlapping.

An important detail to keep in mind is that we may find various different
keys decrypting S into the same original message (e.g. “A” and “AA”), so
that in order to check if the answer is ambiguous it is not sufficient to count
the number of different valid keys we find. Instead, we should explicitly check
that there are at least two keys which result in different strings when they
are repeated as many times as needed to cover the message length |S|.

If we use hashing to compare and rotate strings in O(1) time, as well as
to repeat strings n times in O(log n) time, the solution’s execution time is
then O(K|S| log |S|).

2



4 Flowery Trails

• Subject: graphs

• Difficulty: 2/10

• Solutions during contest: 26

The problem consists in finding the sum of the weights of all edges that
belong to at least one minimum length path joining two given nodes in the
input graph. An edge (u, v) of weight w belongs to a minimum length path
from node S to node T if and only if

dist(S, u) + w + dist(v, T ) = dist(S, T ) ,

where dist(x, y) is the minimum distance between nodes x and y. Since our
graph is undirected, we also have dist(v, T ) = dist(T, v), so that we can use
the above formula to check whether an edge belongs to a minimum length
path from S to T in time O(1), as long as we have precalculated all possible
values of dist(S, x) and dist(T, x). We can achieve this make use twice of
Dijkstra’s algorithm, starting from S and T . The solution then runs in
O(N logN + E) time, where N is the number of nodes in the graph and E
is its number of eges.

5 The Imp

• Subject: dynamic programming

• Difficulty: 3/10

• Solutions during contest: 12

If we consider boxes one-by-one in some arbitrary order to be defined
later, in each step we have two options:

• either we buy the box, in which case the Imp makes sure to minimize
our winnings so that the final value is the minimum between that box’s
value (if he allows us to take it) and the value of all the remaining
boxes when the Imp is left only k − 1 box destructions (if he destroys
the box we have chosen), minus the cost of the destroyed box;

3



• or we do not buy the box, and we move on to the next one without
affecting the Imp’s number of box destructions k.

Since the decision above is up to us, we should maximize between both
cases. Then, we are only left to decide the optimal order in which it is
convenient to consider the boxes, and it is not hard to convince ourselves
that we should do this in order of increasing value. The solution therefore
runs in O(N logN +NK) time.

6 Pork Barrel

• Subject: graphs + data structures

• Difficulty: 10/10

• Solutions during contest: 2

This problem can be understood as a dynamic minimum spanning tree
(MST), in which for each range [l, h] we are to find the weight of the MST
using only the input edges with weights ranging from l to h, inclusive.

We cannot apply a standard MST algorithm (e.g. Kruskal’s algorithm)
to answer each query separately, since this would be too slow. We should
note, however, that if we order the edges according to their weight wi, so that
w1 > w2 > · · · > wM−1 > wM , then the MST using edges of weight greater or
equal to wi (let’s call this MST[wi]) is practically identical to MST[wi+1], i.e.
the MST which uses edges of weights greater or equal to wi+1. In fact, the
only difference between them is that if edge i+1 connects two nodes u and v
which are already connected in MST[wi], then to obtain MST[wi+1] we should
remove the largest edge in the path from u to v in MST[wi], replacing it with
the edge of weight wi+1. On the other hand, if u and v are not connected in
MST[wi], then we simply need to add this edge to obtain MST[wi+1].

Applying the algorithm above we can generate all MST[wi] in timeO(MN),
using DFS to find in each step the heaviest edge in the corresponding path.
To answer the queries, we then need to add the weights of all edges of weight
less than or equal to h which belong to MST[l]. If we store the MST[wi] as
arrays mi[1 . . .M ] such that

mi[j] =

{
0 if edge j /∈ MST[wi]

wj if edgej ∈ MST[wi]
,

4



then the answer to each query can be obtained in logarithmic time using a
segment tree to compute sums over intervals. Since we will be needing M
arrays of this type, we should use persistance to save memory in the represen-
tation of the segment trees, taking us from O(M2) to O(M logM) required
memory. The final solution then runs in O(MN +M logM +Q logM) time.

7 Wedding Hall

• Subject: computational geometry

• Difficulty: 7/10

• Solutions during contest: 0

Let L be the length of the sides of each of the three squares forming the
hall. Note that if it is possible to build a hall of side-length L, then it is
also possible to build a hall of any side-length L′ such that L′ < L. This
property allows us to simplify the problem using binary search on the maxi-
mum allowed size: in each step of the search we need to answer a question of
the form “Is it possible to build a hall of side-length L?” We also note that
without any loss of generality we can assume the hall we build always has at
least one point on its left and lower sides, since otherwise we could displace
the hall continuously to the left or downwards, respectively.

As an intermediate step to reach the solution let us first consider a simpler
problem, namely: is it possible to find a renctangle of dimensions L × 2L
which does not contain any input points, but has at least one of them on its
left side? This problem can be solved using a right-to-left sweep line, where
the events we need to consider correspond to the crossing of the sweeping
line with the input points. If all during the sweeping process we keep track
of the set of points that are at most a distance L to the right of the sweep
line, when we cross a new point we can easily determine whether we can fit a
rectangle of dimensions L× 2L having this point on its left side. To do this,
we look for the first point in our set that is above the one we are crossing, as
well as the first point below it, and if their separation is greater than 2L then
it is possible to fit the L × 2L rectangle between them. Moreover, we can
even determine a vertical segment on which we need to place the lower-left
corner of this rectangle!

5



To solve the original problem, observe that a hall can be thought of as
being composed of two overlapping rectangles, one of dimensions L×2L and
the other of dimensions 2L × L. We therefore need to perform two sweep
lines, one in the right-to-left direction and the other in the the top-to-bottom
direction, to find two sets of segments (vertical and horizontal, respectively)
on which the lower-left corner of both rectangles needs to be placed. Since
we want these rectangles to overlap, their lower-left corner must coincide and
therefore we are interested in the intersections of these sets of segments: if
there is at least one intersecion point, then there exists at least one position
that is compatible with a hall of side-length L, otherwise (i.e. if the sets of
horizontal and vertical segments don’t intersect) it is not possible to build
this particular hall.

8 Stapled Intervals

• Subject: maths

• Difficulty: 5/10

• Solutions during contest: 11

The key observation to solve this problem is that a “stapled interval” can
never contain a prime number p, for if this were the case it should also contain
another number that is not coprime with it, of which the lowest possibility
is 2p. However, Bertrand’s postulate1 states that there is at least one prime
number q in the range from p to 2p. We would therefore be forced to repeat
this procedure extending the interval at least up to 2q, and this would go on
ad infinitum so that our interval could never be finite, which is a necessary
condition to be a stapled interval.

Since the number of primes less than or equal to n is

π(n) ∼ n

log n
,

we can expect their separation to be of order n/π(n) ∼ log n, and the number
of intervals to consider in the range [0, N ] will be O(N logN). A brute-force
check of an interval of size n would take O(n2 logN), where the logarithmic

1https://en.wikipedia.org/wiki/Bertrand’s postulate

6



factor comes from using Euclid’s algorithm to compute greatest common
divisors. Thus, since n ∼ logN a brute-force solution will take O(N log4N)
time, which is too slow (though it could serve to precompute all necessary
stapled intervals offline, to later explicitly include them in your source code).

To speed up the process, we note that

• we can avoid using Euclid’s algorithm noting that the closest non-
coprime numbers to m are m± p, where p is the smallest prime divid-
ing m (which we can precompute while executing the sieve of Eratos-
thenes);

• we may reuse the checks we performed for an interval when checking
some other interval that contains it.

With these observations, it is not too hard to speed up the solution to
O(N log2N) or even O(N logN) execution time, which will be sufficient
to pass the test cases without using any precomputation tricks.

9 It Can Be Arranged

• Subject: graphs

• Difficulty: 6/10

• Solutions during contest: 13

To solve this problem we binary search for the answer (number of rooms
to book), given that if we can satisfy the constraints using K rooms we can
certainly also do so for any number of rooms K ′ > K. To determine whether
it is possible or not to solve the constraints with a given value of K, we
construct a flow network as follows:

• Create two nodes for each assignment, one source (si for i = 1, . . . , N)
and one target (ti for i = 1, . . . , N).

• Create a global source S connected to every source node si with edges
having a capacity equal to the number of rooms required by each sub-
ject (ci for i = 1, . . . , N).

• Creamos a global sink T connected to every target node ti with edges
having capacities ci.

7



• If we can reuse the rooms of the i-th subject for the j-th subject (that
is, if bi + cleanij < aj), we add an edge of infinite capacity from the
source node si to the target node tj.

To impose the condition that the non-reused rooms should be at most K,
we have to make sure that the flow from the set of source nodes {S, si} to
the set of sink nodes {ti, T} which does not go through the infnite-capacity
edges (i.e. does not correspond to reused rooms) is less than or equal to K.
To achieve this:

• Create a node L connected to every source node si with infinite capacity
edges.

• Create a node R connected to every target node ti with infinite capacity
edges.

• Connect L and R with an edge of capacity K.

In this way, the edge from L to R represents all those rooms that need to
be reserved because they cannot be reused from some other subject, and is
in fact the only part of the flow network that needs to be modified as we
perform the binary search. Evidently, it is possible to satisfy the problem’s
conditions with a given value ofK if the flow from S to T in the corresponding
network is equal to the total number of required rooms, namely

∑N
i=1 ci, and

because the number of nodes and edges is O(N) we do not need to use any
particularly efficient flow algorithm to solve this problem.

10 The Agency

• Subject: greedy

• Difficulty: 4/10

• Solutions during contest: 22

To go from planet S to planet E we need to take a certain minimum
number of steps P , each of which changes the bit at a given position of S
that differs with the bit in the same position of E. There are then two tipes
of operations: those in which we turn off a bit in S (that is, we make it
1 7→ 0) and those in which we turn it on (i.e., we have 0 7→ 1).

8



Since we pay a tax every time a given bit is on, it’s clear that it is always
convenient to first perform the “turn off” operations first, and only later the
“turn on” ones. Moreover, when turning off bits it is always convenient to
choose as the next bit the one with a highest tax among all those that need
turning off. Similarly, when turning on bits it is always convenient to choose
in each step the next bit as the one whose tax is the least costly among all
those that need turning on.

With the observations above, given a set of steps we know the optimal
order in which they need to be taken, and can compute the minimum cost
of the whole process. However, it is not necessarily optimal to perform only
P steps: if a bit is on both in S and in E, but its tax is very high, it may
actually be more convenient to turn it off before doing the P steps, and turn
it back on once we have finished. In general, we then need to take P +2×M
steps, the additional 2 ×M steps corresponding to turning off and later on
again the M most costly bits that are on both in S and E.

If the total number of bits in S and E is N , simulating the whole process
takes O(N) time and therefore we can simply check all O(N) possible values
of M . The solution then runs in O(N2 + N logN) time, where the N logN
factor comes from sorting (only once for the whole problem) the costs of all
the taxes.

11 Bases

• Subject: parsing + maths

• Difficulty: 8/10

• Solutions during contest: 4

We need to find all the bases in which two mathematical expressions
involving sums and products of natural numbers are equal. In an arbitrary
base x, a natural number is a polynomial P (x) =

∑
i dix

i, where the di
are the number’s digits with i = 0, 1, 2, . . . going from right to left. Any
expression therefore involves sums and products of polynomials, and in turn
evaluates to a polynomial, so that our problem is to analyze the solutions
of Pl(x) = Pr(x), where Pl(x) and Pr(x) are the polynomials resulting from
evaluating the left- and right-hand-side expressions, respectively.

9



If all the coefficients in Pl(x) and Pr(x) are equal, there is an infinite num-
ber of solutions starting at x = m+1, where m is the highest digit appearing
in either expression (since for any base B the valid digits are 0, 1, . . . , B−1).
Otherwise, let k be the rightmost position where both polynomials differ,
then

0 = Pl(x)− Pr(x) =
N∑
i=k

(li − ri)xi = xk
N−k∑
i=0

(li+k − ri+k)xi ,

where N is the position of the highest non-zero coefficient of either polyno-
mial. Since x = 0 is not a valid base, this means

lk − rk = −x
N−k−1∑
i=0

(li+k+1 − ri+k+1)x
i ,

where we moved the first term outside of the sum and extracted a common x
factor from all the remaining terms. Therefore, x divides |lk − rk| and since
the input expressions are at most 17 characters long we have that coefficients
are bounded by 9×9×· · · = 98 < 5×107; therefore, we can factorize |lk − rk|
and find all of its divisors.2

In order to check whether a certain divisor x of |lk − rk| satisfies Pl(x) =
Pr(x) we need to parse both expressions while evaluating them in base x,
taking care of avoiding overflows (because e.g. 99999999 × 99999999 > 264

already for base 16). One trick to do this is to use a probabilistic check:
randomly choose a few different primes p and check Pl(x) = Pr(x) mod p;
then the evaluation can easily be kept under control, and the probability of
obtaining a “false positive” Pl(x) = Pr(x) result are very small.

2For an estimate of the maximum number of divisors, observe that 2× 3× 5× 7× 11×
13× 17× 19× 23 > 5× 107 and has 29 = 512 divisors.

10


