
ACM ICPC 2009-2010, NEERC, Southern Subregional Contest
Saratov, October 9, 2009

Problem A. Walking around Berhattan
Input file: input.txt

Output file: output.txt

Time limit: 1 second
Memory limit: 64 megabytes

As you probably know, Berhattan is a district of Berland’s largest city and it consists of equal square
blocks. There are n block lines in the east-west direction and m block lines in the south-north direction.
The map shows Berhattan as a rectangle with n rows and m columns, so there are n×m blocks in total.

There are n + 1 streets running parallel in the east-west direction (horizontally), and there are m + 1
avenues running parallel in the south-north direction (vertically). Streets and avenues split the district into
blocks and separate Berhattan from other districts of Berland. Each block in Berhattan is characterized
by its beauty bij .

A pedestrian can walk only along streets and avenues. When the pedestrian walks along any of four sides
of a block, we say he passes the block. Every time the pedestrian passes a block his satisfaction is increased
by bij . If the pedestrian has already passed the block one or more times his satisfaction is increased only
by bij/2 rounded down when he passes the block again.

You are given the map of Berhattan with the information about the blocks’ beauty and the pedestrian’s
path along the streets and avenues. The path is given as a string containing letters ‘L’, ‘R’ and ‘M’, where
‘L’ means a 90 degree left turn, ‘R’ means a 90 degree right turn, and ‘M’ means walking one block forward
by a street or avenue. Facing the east, the pedestrian starts his path in the north-west corner of Berhattan
having zero satisfaction level. His path can cross itself and go along the same streets or avenues several
times. Pedestrian’s satisfaction is increased every time he moves according to the rules described above.

Your task is to calculate the total satisfaction the pedestrian will get after finishing his route.

Picture of the sample test

Input
The first line of input contains two integers n and m (1 ≤ n,m ≤ 100), where n is a number of block lines
in Berhattan running in the east-west direction, and m is a number of block lines in Berhattan running
in the south-north direction. The following n lines contain m digits each. The j-th digit of the i-th line

Page 1 of 17

ACM ICPC 2009-2010, NEERC, Southern Subregional Contest
Saratov, October 9, 2009

represents bij (0 ≤ bij ≤ 9) — the beauty of the corresponding block. The last line of input contains a path
in the format specified above. The path consists of 1 up to 500 characters, inclusively. It is guaranteed
that the given path doesn’t go outside Berhattan.

Output
Print a single integer to the output — the total pedestrian’s satisfaction.

Examples
input.txt output.txt

3 3

123

456

789

MRMMLM

22

Page 2 of 17

ACM ICPC 2009-2010, NEERC, Southern Subregional Contest
Saratov, October 9, 2009

Problem B. Kakuro
Input file: input.txt

Output file: output.txt

Time limit: 1 second
Memory limit: 64 megabytes

Kakuro puzzle is played on a n × m grid of «black» and «white» cells. Apart from the top row and
leftmost column which are entirely black, the grid has some amount of white cells which form «runs» and
some amount of black cells. «Run» is a vertical or horizontal maximal one-lined block of adjacent white
cells. Each row and column of the puzzle can contain more than one «run». Every white cell belongs to
exactly two runs — one horizontal and one vertical run. Each horizontal «run» always has a number in
the black half-cell to its immediate left, and each vertical «run» always has a number in the black half-cell
immediately above it. These numbers are located in «black» cells and are called «clues».

The rules of the puzzle are simple:

• place a single digit from 1 to 9 in each «white» cell

• each digit may only be used once in each «run»

• for all runs, the sum of all digits in a «run» must match the clue associated with the «run»

Given the grid, your task is to find a solution for the puzzle.

Picture of the first sample input Picture of the first sample output

Input
The first line of input contains two integers n and m (2 ≤ n,m ≤ 6) — the number of rows and columns
correspondingly. Each of the next n lines contains descriptions of m cells. Each cell description is one of
the following 5-character strings:

• — «white» cell;

• XXXXX — «black» cell with no clues;

• AA\BB — «black» cell with one or two clues. AA is either a 2-digit clue for the corresponding vertical
run, or «XX» if there is no associated vertical run. BB is either a 2-digit clue for the corresponding
horizontal run, or «XX» if there is no associated horizontal run.

The first row and the first column of the grid will never have any white cells. The given grid will have at
least one «white» cell.

It is guaranteed that the given puzzle has at least one solution.

Page 3 of 17

ACM ICPC 2009-2010, NEERC, Southern Subregional Contest
Saratov, October 9, 2009

Output
Print n lines to the output with m cells in each line. For every «black» cell print ’_’ (underscore), for
every «white» cell print the corresponding digit from the solution. Delimit cells with a single space, so
that each row consists of 2m− 1 characters.

If there are many solutions, you may output any of them.

Examples
input.txt

6 6

XXXXX XXXXX 28\XX 17\XX 28\XX XXXXX

XXXXX 22\22 10\XX

XX\34

XX\14 16\13

XX\22 XXXXX

XXXXX XX\16 XXXXX XXXXX

output.txt

_ _ _ _ _ _

_ _ 5 9 8 _

_ 9 7 8 4 6

_ 8 6 _ 9 4

_ 5 1 9 7 _

_ _ 9 7 _ _

input.txt

3 3

XXXXX 04\XX XXXXX

XX\04 XXXXX

XXXXX XXXXX XXXXX

output.txt

_ _ _

_ 4 _

_ _ _

Page 4 of 17

ACM ICPC 2009-2010, NEERC, Southern Subregional Contest
Saratov, October 9, 2009

Problem C. Electrician
Input file: input.txt

Output file: output.txt

Time limit: 1 second
Memory limit: 64 megabytes

An electrician Vasya has got an assignment to solder n wires. His boss specified the requirements precisely,
so for each wire Vasya knows exactly where its endpoints should be soldered to. Two identifiers ai, bi are
given for each wire, meaning that one endpoint of the wire should be soldered to the place ai, and the
other endpoint should be soldered to the place bi. It doesn’t matter which endpoint will be soldered to
which place. Also each wire has two more characteristics ri and pi, where ri is its reliability and pi is its
cost.

The only way for Vasya to express himself in such a rigorous constraints is to choose an order, and solder
all wires in this order, one after another. As an experienced electrician Vasya knows what a short circuit
is — it occurs when a scheme contains a cycle, in other words when there is more than one simple path
over wires from one place to another. So, if a short circuit occurs after a wire is soldered, the least reliable
wire in the cycle burns out (you may think that the least reliable wire disappears from the scheme). If
there are several least reliable wires in the cycle, the one of them which was soldered earlier burns out. It
is clear that after a wire burns out, the scheme doesn’t have any cycles.

When Vasya is done with soldering, he ends up with a scheme of soldered wires. So, he wants to solder all
wires in such an order, that the total cost of wires in a resulting scheme will be as maximal as possible.

Input
The first line of input contains a single integer n (1 ≤ n ≤ 30000). Each of the following n lines contains
four integer numbers ai, bi, ri, pi (1 ≤ ai, bi, ri, pi ≤ 109; ai ̸= bi), where ai and bi are identifiers of the
places for endpoints of i-th wire, ri is the reliability of the wire, and pi is the cost of the wire. There can
be more than one wire between any pair of places.

Output
Print the required maximal total cost to the first line of output. Print the order of wires for soldering to
the second line, delimiting wire indices with a single space.

You may print any solution if there are many of them.

Examples
input.txt output.txt

4

10 20 5 3

20 11 5 2

10 11 7 1

1 2 1 1

5

2 3 1 4

Note
In the sample test Vasya can choose any order with the only rule: the second wire should be soldered
before the first one. If he violates the rule, the total cost will be 4 instead of 5.

Page 5 of 17

ACM ICPC 2009-2010, NEERC, Southern Subregional Contest
Saratov, October 9, 2009

Problem D. Sequence analysis
Input file: input.txt

Output file: output.txt

Time limit: 10 seconds
Memory limit: 64 megabytes

You are given a sequence of signed 64-bit integers defined as follows:

• x0 = 1,

• xi+1 = (A · xi + xi mod B) mod C,

where mod is a remainder operator. All arithmetic operations are evaluated without overflow checking.
Use standard “remainder” operator for programming languages (it differs from the mathematical version;
for example −5 mod 2 = −1 in programming, while −5 mod 2 = 1 in mathematics). Use “long long”
type in C++, “long” in Java and “int64” in Delphi to store xi and all other values.

Let’s call a sequence element xp repeatable if it occurs later in the sequence — meaning that there exists
such q, q > p, that xq = xp. The first repeatable element M of the sequence is such an element xm that
xm is repeatable, and none of the xp where p < m are repeatable.

Given A, B and C, your task is to find the index of the second occurence of the first repeatable element
M in the sequence if the index is less or equal to 2 · 107. Per definition, the first element of the sequence
has index 0.

Input
The only line of input contains three signed 64-bit integers: A, B and C (B > 0, C > 0).

Output
Print a single integer — the index of the second occurence of the first repeatable member if it is less or
equal to 2 · 107. Print −1 if the index is more than 2 · 107.

Examples
input.txt

2 2 9

output.txt

4

input.txt

2305843009213693951 1 9223372036854775807

output.txt

5

input.txt

-2 1 5

output.txt

4

Note
In the first sample test the sequence starts with the following numbers: 1, 3, 7, 6, 3, 7. The first repeatable
element is 3. The second occurence of 3 has index 4.

In the second sample test the sequence starts with the following numbers: 1, 2305843009213693951,
-4611686018427387903, 6917529027641081855, 0, 0, 0. The first repeatable element is 0. The second
occurence of 0 has index 5.

Page 6 of 17

ACM ICPC 2009-2010, NEERC, Southern Subregional Contest
Saratov, October 9, 2009

In the third sample test the sequence starts with the following numbers: 1, -2, 4, -3, 1, -2, 4. The first
repeatable element is 1. The second occurence of 1 has index 4.

Page 7 of 17

ACM ICPC 2009-2010, NEERC, Southern Subregional Contest
Saratov, October 9, 2009

Problem E. Meetings
Input file: input.txt

Output file: output.txt

Time limit: 1 second
Memory limit: 64 megabytes

Two cities A and B are connected by a straight road that is exactly l meters long. At the initial moment
of time a cyclist starts moving from city A to city B at a speed v1 meters/second, and a pedestrian starts
moving from city B to city A at a speed v2 meters/second. When one of them reaches a city, the road
ends, so the person has to turn around and start moving in the opposite direction by the same road,
keeping the original speed. As a result, the cyclist and the pedestrian are traveling between cities A and
B indefinitely.

Your task is to calculate the number of times they will meet during the first t seconds. If they meet in
exactly t seconds after the initial moment of time, this meeting should also be counted.

Input
The only line of input contains four integer numbers: l, v1, v2 and t. All numbers are between 1 and 109,
inclusively.

Output
Print a single integer — the number of times the cyclist and the pedestrian will meet during the first t
seconds.

Examples
input.txt output.txt

1000 10 1 200 2

4 4 3 4 4

Page 8 of 17

ACM ICPC 2009-2010, NEERC, Southern Subregional Contest
Saratov, October 9, 2009

Problem F. The Monochrome Picture
Input file: input.txt

Output file: output.txt

Time limit: 1 second
Memory limit: 64 megabytes

An artist Kalevich is very ambitious and he has many different achievements over the years of his work.
Kalevich became extremely famous when he first produced the largest digital picture in the world, setting
a new world record in digital painting. It was a great victory with a very unusual image — a billion pixels
in width, and... only one pixel in height. The win changed the entire Kalevich’s life, so starting from that
memorable moment all his digital masterpieces have the height of 1 pixel.

Recently Kalevich was invited to an exhibition in order to demonstrate the best picture he has ever
painted. The picture is n pixels in width, 1 pixel in height, and it is called “The Monochrome Snake”.
As you have already guessed, the painting is indeed monochrome, so the i-th pixel is characterized by a
single integer ci from 0 to 106 that is a grayscale representation of its color.

Many visitors at the exhibition have never seen any pictures with colors different from the standard 24-bit
RGB, so they look at Kalevich’s masterpiece with a great suspicion. Kalevich realized that the visitors
do not like monochrome pictures at all, and what is even worse, if the colors of two adjacent pixels in
a monochrome picture differ exactly by one, the visitors get angry and go away. Kalevich feels really
nervous about this, so he wants to improve his painting in order to please the exigent visitors and keep
them at the exhibition. At the same time he wants to preserve the idea of the picture — the snake should
be still recognizable, so the only change he wants to make is to delete some pixels here and there. When
he deletes a pixel, the width of the painting decreases by 1 of course. Kalevich will be satisfied with the
result if |ri − ri+1| ̸= 1 for all i = 1 . . .m− 1, where r is the final masterpiece and m is its length.

Your task is to help Kalevich and write a program that will help him to delete the minimum number of
pixels from the picture, so that the resulting masterpiece does not have any two adjacent pixels with the
colors that differ exactly by one.

Input
The first line of input contains a single integer n (1 ≤ n ≤ 105). The second line of input contains n
integers separated by spaces — pixel colors c1, c2, . . . , cn (0 ≤ ci ≤ 106).

Output
To the first line of output print the minimum number of pixel deletions t that are needed to satisfy
Kalevich’s requirements. To the second line print m integer numbers (m = n− t) — the masterpiece that
is left after t pixel deletions.

If there are many solutions, you may output any of them.

Examples
input.txt output.txt

6

4 2 2 1 1 1

2

4 1 1 1

5

1 2 3 2 1

2

1 3 1

Page 9 of 17

ACM ICPC 2009-2010, NEERC, Southern Subregional Contest
Saratov, October 9, 2009

Problem G. Plural Form of Nouns
Input file: input.txt

Output file: output.txt

Time limit: 1 second
Memory limit: 64 megabytes

In the English language, nouns are inflected by grammatical number — that is singular or plural. In this
problem we use a simple model of constructing plural from a singular form. This model doesn’t always
make English plural forms correctly, but it works in most cases. Forget about the real rules you know
while solving the problem and use the statement as a formal document.

You are given several nouns in a singular form and your program should translate them into plural form
using the following rules:

• If a singular noun ends with ch, x, s, o the plural is formed by adding es. For example, witch →
witches, tomato → tomatoes.

• If a singular noun ends with f or fe, the plural form ends with ves. For example, leaf → leaves, knife
→ knives. Pay attention to the letter f becoming v.

• Nouns ending with y change the ending to ies in plural. For example, family → families.

• In all other cases plural is formed by adding s. For example, book → books.

Input
The first line of input contains a single positive integer n (1 ≤ n ≤ 10) — the number of words to be
processed. The following n lines contain one word each. A word consists from 2 to 25 lowercase Latin
letters. It is not guaranteed that the given words are real English words from vocabulary.

Output
Print n given words in their plural forms on separate lines. Keep the words in the same order as they are
given in the input.

Examples
input.txt output.txt

3

contest

hero

lady

contests

heroes

ladies

Page 10 of 17

ACM ICPC 2009-2010, NEERC, Southern Subregional Contest
Saratov, October 9, 2009

Problem H. Annuity Payment Scheme
Input file: input.txt

Output file: output.txt

Time limit: 1 second
Memory limit: 64 megabytes

At the peak of the Global Economic Crisis BerBank offered an unprecedented credit program. The offering
was so attractive that Vitaly decided to try it. He took a loan of s burles for m months with the interest
rate of p percent.

Vitaly has to follow the scheme of annuity payments, meaning that he should make fixed monthly payments
— x burles per month. Obviously, at the end of the period he will pay m · x burles to the bank in total.

Each of the monthly payments is divided by BerBank into two parts as follows:

• The first part ai is used to pay off the percent p of the current debt. It’s clear that ai = s′ · p/100
where s′ = s for the first month and equals to the remaining debt for each of the subsequent months.

• The second part bi is used to pay off the current debt. The sum of all bi over the payment period is
equal to s, meaning that the borrower needs to pay off the debt completely by decreasing it from s
to 0 in m months.

BerBank uses calculations with floating-point numbers, and the value of x is uniquely determined by s,m
and p.

For example, if s = 100,m = 2, p = 50 then x = 90. For the first month a1 = s′ · p/100 = s · p/100 = 50
and b1 = 90 − 50 = 40. For the second month a2 = (100 − 40) · 50/100 = 30, so b2 = 90 − 30 = 60 and
the debt is paid off completely.

Your task is to help Vitaly and write a program that computes x given the values of s,m and p.

Input
The single line of the input contains three integers s, m and p (1 ≤ s ≤ 106, 1 ≤ m ≤ 120, 0 ≤ p ≤ 100).

Output
Output the single value of monthly payment x in burles. An absolute error of up to 10−5 is allowed.

Examples
input.txt output.txt

100 2 50 90.00000

Page 11 of 17

ACM ICPC 2009-2010, NEERC, Southern Subregional Contest
Saratov, October 9, 2009

Problem I. Snow in Berland
Input file: input.txt

Output file: output.txt

Time limit: 1 second
Memory limit: 64 megabytes

Winters are very snowy in Berland, and the current winter is not an exception. Each winter Berland
government decides how to clean the roads in the country. The problem is particularly acute in the
capital.

You may assume that the capital of Berland consists of n junctions and m one-way roads. Each road has
two distinct junctions xi, yi as its end-points, and the traffic goes from xi to yi. There are wi tons of snow
on i-th road.

The government hired a private company “Snow White” to clean the city from the snow. Every day the
company sends one truck for cleaning the roads — the truck starts from junction A, passes some route to
junction B and stops. Single route can contain any road several times, and can pass through any junction
(including A and B) several times.

So, the truck makes only one trip from junction A to junction B per day, and the truck’s driver, of course,
may not violate the traffic direction on the roads. The truck removes one ton of snow from each road it
passes. If it passes the road several times during the same day, each time one ton of snow is removed from
the road. Because capital residents may decide that the government spends the budget for nothing, the
truck can not pass the road if there is no snow on it.

Some roads in the city have historical value due to the presence of government buildings, so this set of
roads must be completely cleaned from snow. In other words each road from the specified set should not
have snow after “Snow White” ’s work. It’s known that junction A is situated in the historical center of
the capital, meaning that it is possible to reach any historical road from A, walking only along historical
roads in the direction of their orientation or in the opposite direction. The direction of roads is not taken
into account in this particular case, because we are talking about walking, not driving.

The government pays “Snow White” for each day of work, so “Snow White” ’s top managers are looking
for a way to work as many days as possible.

Your task is to find the sequence of routes from A to B which doesn’t violate the rules described above.
This sequence must completely clean all historical roads from snow. Obviously, the sequence should contain
as many routes as possible.

Input
The first line of the input contains integer numbers n,m,A,B
(2 ≤ n ≤ 100; 0 ≤ m ≤ 5000; 1 ≤ A,B ≤ n;A ̸= B), where n — the number of junctions in the
capital and m — the number of roads in it. The following m lines describe one-way roads, one road per
line. Each line contains four integers xi, yi, wi, ti (1 ≤ xi, yi ≤ n;xi ̸= yi; 0 ≤ wi ≤ 100; 0 ≤ ti ≤ 1), where
xi, yi are the endpoints of the road, wi — the amount of snow in tons on the road, and ti — type of the
road (0 means regular road, and 1 means historical road). There will be no more than one road between
two junctions in each direction. It is possible to reach any historical road from A by walking along other
historical roads (again, not taking into account the direction while walking)

Output
Write p — the maximum number of days “Snow White” can work. The next p lines should contain the
chosen routes. Each route should be printed as a list of junctions that starts with A and ends with B,
and all junction numbers should be separated by spaces. You may print routes in any order.

If there are many solutions, you may output any of them. If there is no solution, write a single integer 0
to the output.

Page 12 of 17

ACM ICPC 2009-2010, NEERC, Southern Subregional Contest
Saratov, October 9, 2009

Examples
input.txt output.txt

4 7 1 4

1 2 3 1

2 1 100 0

2 4 1 0

1 3 1 0

3 4 4 0

2 3 2 1

1 4 2 0

6

1 3 4

1 4

1 4

1 2 4

1 2 3 4

1 2 3 4

3 3 1 2

1 3 2 0

3 2 3 0

1 2 1 0

3

1 3 2

1 3 2

1 2

Page 13 of 17

ACM ICPC 2009-2010, NEERC, Southern Subregional Contest
Saratov, October 9, 2009

Problem J. Choreographer Problem
Input file: input.txt

Output file: output.txt

Time limit: 2 seconds
Memory limit: 64 megabytes

As you probably know, choreography is the art of making dances. But it is not a so well-known fact that
it is also the science of making dances.

There are n dancers numbered from 1 to n in the dance troupe, and all of them are working hard to
create a new original dance. Before the dance starts each dancer puts on his special hand-made costume,
and he has to wear this costume for the duration of the entire dance.

It is known that the costume of i-th dancer is similar to the costumes of (i− 1)-th and (i+1)-th dancers
(therefore the dancers are similar too), but at the same time, i-th dancer is not similar to any other
dancer. Therefore, (i− 1)-th and (i+1)-th dancers are not similar. If n > 1, then the first dancer has the
only similar dancer, the last dancer has the only similar dancer, and all other dancers have exactly two
similar dancers.

The dance starts and ends with an empty stage. The stage should not be empty during the dance. Each
minute one of the following changes happens on the stage:

• one dancer (who is currently not on the stage) appears;

• one dancer (who is currently on the stage) leaves the stage;

• one dancer takes the place of another dancer similar to him/her (basically the dancers switch over
— one dancer leaves the stage, while a similar dancer appears on the stage)

At every moment of time the stage must not have more than k dancers, because spectators may lose
attention if there are too many dancers on the stage.

Now choreographer is thinking about arranging the dance in such a way that each set of the dancers
containing no more than k dancers appears on the stage exactly once. Your job is to write a program to
help the choreographer.

Input
The first line contains two positive integer numbers n, k (1 ≤ n ≤ 20; 1 ≤ k ≤ n).

Output
Print the only line describing the dance. The substring «+i» means that the i-th dancer appears on the
stage, the substring «-i» means that the i-th dancer leaves the stage. The substring «++i» means that
the i-th dancer leaves while the similar (i+ 1)-th dancer appears, and «--i» means that the i-th dancer
leaves while the similar (i− 1)-th dancer appears. The output will be processed from the left to the right.

If there are many solutions, you may output any of them. If there is no solution, print 0 to the only line
of output.

Examples
input.txt output.txt

2 1 +1++1-2

Page 14 of 17

ACM ICPC 2009-2010, NEERC, Southern Subregional Contest
Saratov, October 9, 2009

Problem K. Wiki Lists
Input file: input.txt

Output file: output.txt

Time limit: 1 second
Memory limit: 64 megabytes

In this task you need to write a small part of wiki-to-HTML translator. You have to deal only with
enumerated and regular lists.

Wiki dialect in this task defines lists as follows — the character “#” defines an enumerated list and “*”
defines a regular list. These symbols are called list markers.

Wiki-text should be processed line by line. A group of two or more consecutive lines should be treated as
elements of the same list (enumerated, or regular) if these lines start with the same list marker symbol.

A group of two or more consecutive list elements should be considered as a nested list if these elements
start with the same list marker symbol. This rule should be applied recursively.

HTML equivalent of a wiki-text is formed using the well-known HTML syntax. An enumerated list starts
with “”, then all list elements are written, and then the list ends with “”. HTML equivalent of
a regular list is similar to the one for enumerated list, but it starts with “” and ends with “”.
An element of any list is represented by “”, then the contents of the element are written followed by
“”.

The rules given above unambiguously define the way to make HTML from wiki-text. Please refer to the
sample tests for clarifications.

Input
Input contains a wiki-text with no less than 1 and no more than 1000 lines. The total length of all input
lines is not greater than 1000 characters. The depth of nested lists is not limited. Input contains only
lowercase and uppercase Latin letters, digits, symbols “*” and “#”, and line breaks. Each line contains at
least one character different from “*” and “#”, so there will be no empty lines in the output.

Output
Print HTML equivalent of the given wiki-text to the output. All tags should be placed on separate lines
with no spaces.

Page 15 of 17

ACM ICPC 2009-2010, NEERC, Southern Subregional Contest
Saratov, October 9, 2009

Examples
input.txt output.txt

FirstLine

*ItemX

*ItemY

#Item1

#Item2

*ItemZ

FirstLine

ItemX

ItemY

Item1

Item2

*ItemZ

input.txt output.txt

*ab

*x#x

*#1

*#2

#3

ab

x#x

1

2

#3

Page 16 of 17

ACM ICPC 2009-2010, NEERC, Southern Subregional Contest
Saratov, October 9, 2009

input.txt output.txt

***1

**2

*1

2

Page 17 of 17

