
Nizhny Novgorod SU Contest brief editorial

Maxim Akhmedov
Moscow State University, Yandex

January 24th, 2017

1 Problem A. Prevent a Galactic War!

This is a task for implementing any of the different iterative approaches.
First of all, using the original values of cij and yi, find out the amount of product of all

remaining kinds that is needed for creating a unit of product i.
For example, start by letting x̆i = y̆i. This is not a correct solution yet, because creating x̆i

product of the i-th type would require to also provide some amount of i-th product for creating
the remaining products. By x̆i calculate the amount of the rest products c̆ij that is needed,
and replace all x̆i with x̆′i = y̆i +

∑
j 6=i

c̆ij.

Continue doing that until the vector x̆i will stop changing much. One may prove that this
solution works in O(n2 logPREC−1), where PREC is the precision one wants to achieve.

2 Problem B. Forcefield

Simulate the process using an std::set or TreeSet.

3 Problem C. Missing Part

For each letter x among ‘‘abcde’’ and letter y among ‘‘ABCDE’’ calculate the vector of
numbers Mxy[0],Mxy[1], . . . ,Mxy[n − 1] that are defined as: Mxy[i] is the number of positions
such that the first string contains an x character and the second string contains an y character
if we shift the second string circularly by i positions.

For a fixed x and y such a vector may be found via Fast Fourier Transform (this is called a
circular convolution problem). Make such convolution for all 25 pairs of x and y, then iterate
over all 5! = 120 matchings p = (pa, pb, pc, pd, pe) (x matches to px, px ∈ “ABCDE”) and find
such p and i that the sum Mapa [i] + . . . + Mepe [i] is the largest possible.

4 Problem D. Handling a Spaceship

First, ask the speed for all gi set to 1, let the resulting vector be ~v0. Then, perform n queries,
on j-th query set all gi to 1 except the gj that is set to 2. Let the result of such query be ~vj .

After that, the ~vj − ~v0 is equal to (Kj2 − Kj1) ~Xj . Consider the ~bj = ~vj − ~v0, the set of

vectors ~b1, ~b2, . . . , ~bn form the basis of a set ~X1, ~X2, . . . , ~Xn.
Suppose we have an absolutely precise real numbers. We will spend the remaining 19 queries

while making the parallel binary search. Suppose that before i-th step we know that the zero

1

selector for j-th direction is between lj and rj . Consider the mj =
⌊
lj+rj

2

⌋
state of the j-th

selector, let gj = mj for all j. Make a query for such selectors, express the resulting speed
vector ~v as a linear combination of basis vectors bj using the Gauss algorithm. For those j that
we have positive coefficient we perform rj = mj , for those that we have negative coefficient we
perform lj = mj , for those we have the zero coefficient we already found the answer.

This will require about log n more operations. Now in order to deal with losing precision
during the Gauss algorithm, reduce each of the basis vectors by GCD of their components, this
will make all the coefficients in an expression of ~v as a linear combination of basis vectors be
integral. After that perform all the computations modulo 109 + 7. Now the “positive” numbers
will be those that are closer to 0 rather than to 109 + 7.

5 Problem E. Cryptographic Argument

This problem requires a careful look at how the resulting sequence looks like. Suppose that the
sequence is zero-based.

• a2j + a2j+1 = a2j ⊕ a2j+1 = 2k − 1 since after the first step the numbers having comple-
mentary binary representation are paired together;

• Since for the operation priority depends on the pairity of l, it results in that the operations
having the largest priority are always performed on numbers a2j and a2j+1 for some j.
So, it’s easy to account their effect to the whole sum/xor by calculating the number p of
such pairs inside range [l, r] and adding p · (2k − 1) / xoring with (pmod 2) · (2k − 1);

• So, the answer to the query consists of at most two unpaired numbers near l and r and
all the pairs in the middle that can be dealt in O(1). So all we have to do is to be able to
find the numbers given their indices in the final sequence;

• In order to do that use the first observation and the recursive nature of the sequence and
find a way to reduce the findNumber(i, k) to findNumber(i′, k − 1) for some i′.

6 Problem F. The Jedi Killer

• If all three points belong to the same line, they should all appear either on main ray or
on the guard;

• The other possibilities are: either one point will belong to the main ray and two to the
guard or vice versa;

• If one of the points is on the ray and two on the guard: try each of the three points to be
the ray one. Let’s say C is on the ray and AB should be on guard. Let X be a projection
of C onto AB. X has to be the base point of a lightsaber, so just check that |XA| and
|XB| are no larger than Lg and XC is no larger than Lm;

• If one of the points is on the guard and two are on the ray: do almost the same thing.
Let C be on guard and A and B be on main ray. Let X be a projection of C onto AB.
It should be true that |XC| ≤ Lg and |XA|, |XB| ≤ Lm, but there is also an important
extra condition: A and B should not lie by the different sides from X since that restricts
us from choosing the single direction for a main ray.

2

7 Problem G. Youngling Tournament

Let’s try to find the number of winners for a current situation fast enough. Suppose younglings
follow in order of increasing fi. We are willing to find all such i that fi ≥ f1 + f2 + . . . + fi−1.

It is true that f1 and f2 are always winners. Create a variable S = f1 +f2, it will denote the
sum on the current prefix we are considering. The next winner should have sum at least S: find
the first fi ≥ S, and check if it is the sum by calculating the f1 + f2 + . . .+ fi−1 and comparing
with fi. If he is a winner, increase the number of winners. In both cases, replace S with the
sum f1 +f2 + . . .+fi, this is the minimum sum on the prefix for the next winner. Note that the
new value for S is at least twice as large as the previous one, because both f1 + f2 + . . . + fi−1
and fi are no smaller than S. Hence, we will have at most log2 1012 steps. In order to compute
the sums fast enough, compress all numbers (already existing and the new one that appear) to
the range of n + m, build a Fenwick tree and using it you will be able to calculate the sums in
O(log(n + m)).

So, the overall complexity of one query is O(logMAX · log(n + m)) where MAX is 1012 in
our case.

8 Problem H. Garland Checking

Everybody who submitted this problem used a Linking-Cutting trees data structure. Although
it may be solved without any heavy data structures.

Keep a color of each vertex that defines the connected component it belongs to. When
linking two trees together, recolor the smaller of them into the color of larger of them. If you
only had links, it would result in O(n log n) complexity because it is similar to the rank heuristic
in DSU.

Let’s perform cuts in a similar manner: from two formed pieces, color the smaller one into
a new color. In order for this to work in O(min(s1, s2)) where s1 and s2 are the sizes of two
components, run a parallel DFS from each of the endpoints of the edge being cut, visiting one
vertex from each side of the cut at a single step.

This works still in O(n log n) because the worst case for this solution would be when all joins
precede all the cuts, and in this case all joins will work in O(n log n) due to the rank heuristics
argument, and all cuts will also work in O(n log n) due to the same argument if we reverse the
time.

9 Problem I. Equipment Assembling

To be added later.

3

