
8197 Jumping Frog
Pog the Frog wants to compete in the World Frog Jump competition, which will take place in Nlogonia.
In the competition, each frog must perform a sequence of acrobatic jumps in a specially built arena. The
arena is composed of N equally spaced positions around a circumference (the arc between two adjacent
positions is always the same length) where each position can be either a rock or a pond. The positions
are numbered sequentially from 0 to N−1 in the clockwise direction, so that judges can easily make
notes about which jumps were performed in each position. Thus, position 0 is adjacent to positions 1
and N−1 in the arena.

The competition rules stipulate that the sequence of jumps of each frog must start at a rock, always
go from a rock to another rock, and finish at the same position it started. The rules do not require
frogs to use every rock in the arena for their sequence of jumps.

Pog the Frog is currently practicing for the competition. He must develop two skills. First, he needs
to get better at jumping from one rock to another, since landing on either a pond or outside of the
marked positions can mean disqualification. Besides that, he must learn impressing acrobatic moves.
With that in mind, he has decided on a practicing strategy. In the beginning of each practice session,
Pog the Frog will pick a starting rock and an integer jump length K between 1 and N−1. After that,
whenever he is standing on a rock numbered i, he will aim his next acrobatic jump at the rock whose
number is obtained by getting the remainder of the division of i+K by N . He will stop when he lands
on the starting rock. For example, if the arena has 3 positions, all of them rocks, and Pog the Frog
starts at position 0 and picks K = 2, he will first jump from rock 0 to rock 2, then to rock 1, and finally
jump back to rock 0. At this point, his practice session ends.

Given the description of the N positions in the arena, help Pog the Frog by answering this question:
how many distinct values of K can he choose for his practice sessions, if he can use any rock as a
starting position for his sequence of jumps?

Input

The input file contains several test cases, each of them consists of a single line that contains a string
S of N characters (3 ≤ N ≤ 105), representing the positions in the arena. The i-th character of S

(i = 0, 1, . . . , N−1) indicates that the position i in the arena is either a rock (uppercase letter ‘R’) or a
pond (uppercase letter ‘P’).

Output

For each test case, output a single line with an integer representing the number of distinct jump lengths
that Pog the Frog can choose for his practice sessions, given that he can use any rock as a starting
position for his sequence of jumps.

Sample Input

RRR
RRPR
PRP

ACM-ICPC Live Archive: 8197 – Jumping Frog 2/2

Sample Output
2
1
0

8189 Buggy ICPC
Alan Curing is a famous sports programmer. He is the creator of the theoretical model of computation
known as the Alan Curing Machine (ACM). He’s most famous for creating his own computer for pro-
gramming competitions: the Integrated Computer for Programming Contests (ICPC). This computer
has a specialized operating system with commands for submitting code and testing executables on sam-
ple inputs, an input generator, a wide display for debugging, and a very soft keyboard. However, as
it happens even to the best, Alan’s creation has a nasty bug. Every time Alan types a vowel on the
ICPC, the content of the current line is reversed.

The bug has been extremely hard to track down, so Alan has decided to accept the challenge and
use the computer as it is. He is currently training touch typing on the ICPC. For now, he is only typing
strings using lowercase letters, and no spaces. When Alan types a consonant, it is appended to the end
of the current line, as one would expect. When he types a vowel, however, the typed character is first
added to the end of the line, but right after that the whole line is reversed. For example, if the current
line has “imc” and Alan types “a” (a vowel), for a brief moment the line will become “imca”, but then
the bug kicks in and turns the line into “acmi”. If after that he types the consonants “c”, “p” and “c”,
in that order, the line becomes “acmicpc”.

When practicing, Alan first thinks of the text he wants to type, and then tries to come up with a
sequence of characters he can type in order to obtain that text. He is having trouble, however, since he
realized that he cannot obtain some texts at all (such as “ca”), and there are multiple ways of obtaining
other texts (as “ac”, which is obtained whether he types “ac” or “ca”). Help Alan in his training by
telling him in how many ways he can type each text he wishes to type. A way of typing a text T can
be encoded by a string W with |T | characters such that if the characters are typed on the ICPC in
the order they appear in W (i.e. W1,W2, . . . ,W|T |) the final result is equal to T , considering ICPC’s
known bug. Two ways are considered different if they are encoded by different strings. The letters that
trigger the bug in the ICPC when typed are “a”, “e”, “i”, “o” and “u”.

Input
The input file contains several test cases, each of them consists of a single line that contains a non-empty
string T of at most 10

5 lowercase letters, representing the text Alan wants to type on the ICPC.

Output
For each test case, output a single line with an integer representing the number of distinct ways Alan
can type the desired text T considering ICPC’s known bug.

Sample Input
ac
ca
acmicpc

Sample Output
2
0
3

6187 Never Wait for Weights

In a laboratory, an assistant, Nathan Wada, is measuring weight differences between sample pieces pair
by pair. He is using a balance because it can more precisely measure the weight difference between two
samples than a spring scale when the samples have nearly the same weight.

He is occasionally asked the weight differences between pairs of samples. He can or cannot answer
based on measurement results already obtained.

Since he is accumulating a massive amount of measurement data, it is now not easy for him to
promptly tell the weight differences. Nathan asks you to develop a program that records measurement
results and automatically tells the weight differences.

Input

The input consists of multiple datasets. The first line of a dataset contains two integers N and M . N
denotes the number of sample pieces (2 ≤ N ≤ 100, 000). Each sample is assigned a unique number
from 1 to N as an identifier. The rest of the dataset consists of M lines (1 ≤ M ≤ 100, 000), each of
which corresponds to either a measurement result or an inquiry. They are given in chronological order.

A measurement result has the format,

! a b w

which represents the sample piece numbered b is heavier than one numbered a by w micrograms (a ̸= b).
That is, w = wb−wa, where wa and wb are the weights of a and b, respectively. Here, w is a non-negative
integer not exceeding 1,000,000.

You may assume that all measurements are exact and consistent.
An inquiry has the format,

? a b

which asks the weight difference between the sample pieces numbered a and b (a ̸= b).
The last dataset is followed by a line consisting of two zeros separated by a space.

Output

For each inquiry, ? a b, print the weight difference in micrograms between the sample pieces numbered a

and b, wb−wa, followed by a newline if the weight difference can be computed based on the measurement
results prior to the inquiry. The difference can be zero, or negative as well as positive. You can
assume that its absolute value is at most 1,000,000. If the difference cannot be computed based on the
measurement results prior to the inquiry, print ‘UNKNOWN’ followed by a newline.

Sample Input

2 2

! 1 2 1

? 1 2

2 2

! 1 2 1

? 2 1

4 7

! 1 2 100

ACM-ICPC Live Archive: 6187 – Never Wait for Weights 2/2

? 2 3

! 2 3 100

? 2 3

? 1 3

! 4 3 150

? 4 1

0 0

Sample Output

1

-1

UNKNOWN

100

200

-50

6189 Company Organization

You started a company a few years ago and fortunately it has been highly successful. As the growth of
the company, you noticed that you need to manage employees in a more organized way, and decided to
form several groups and assign employees to them.

Now, you are planning to form n groups, each of which corresponds to a project in the company.
Sometimes you have constraints on members in groups. For example, a group must be a subset of
another group because the former group will consist of senior members of the latter group, the members
in two groups must be the same because current activities of the two projects are closely related, the
members in two groups must not be exactly the same to avoid corruption, two groups cannot have
a common employee because of a security reason, and two groups must have a common employee to
facilitate collaboration.

In summary, by letting Xi (i = 1, . . . , n) be the set of employees assigned to the i-th group, we have
five types of constraints as follows.

1. Xi ⊆ Xj

2. Xi = Xj

3. Xi ̸= Xj

4. Xi ∩Xj = ∅

5. Xi ∩Xj ̸= ∅

Since you have listed up constraints without considering consistency, it might be the case that you
cannot satisfy all the constraints. Constraints are thus ordered according to their priorities, and you
now want to know how many constraints of the highest priority can be satisfied.

You do not have to take ability of employees into consideration. That is, you can assign anyone to
any group. Also, you can form groups with no employee. Furthermore, you can hire or fire as many
employees as you want if you can satisfy more constraints by doing so.

For example, suppose that we have the following five constraints on three groups in the order of
their priorities, corresponding to the first dataset in the sample input.

• X2 ⊆ X1

• X3 ⊆ X2

• X1 ⊆ X3

• X1 ̸= X3

• X3 ⊆ X1

By assigning the same set of employees to X1, X2, and X3, we can satisfy the first three constraints.
However, no matter how we assign employees to X1, X2, and X3, we cannot satisfy the first four highest
priority constraints at the same time. Though we can satisfy the first three constraints and the fifth
constraint at the same time, the answer should be three.

ACM-ICPC Live Archive: 6189 – Company Organization 2/2

Input

The input consists of several datasets. The first line of a dataset consists of two integers n (2 ≤ n ≤

100) and m (1 ≤ m ≤ 10000), which indicate the number of groups and the number of constraints,
respectively. Then, description of m constraints follows. The description of each constraint consists of
three integers s (1 ≤ s ≤ 5), i (1 ≤ i ≤ n), and j (1 ≤ j ≤ n, j ̸= i), meaning a constraint of the s-th
type imposed on the i-th group and the j-th group. The type number of a constraint is as listed above.
The constraints are given in the descending order of priority.

The input ends with a line containing two zeros.

Output

For each dataset, output the number of constraints of the highest priority satisfiable at the same time.

Sample Input

4 5

1 2 1

1 3 2

1 1 3

3 1 3

1 3 1

4 4

1 2 1

1 3 2

1 1 3

4 1 3

4 5

1 2 1

1 3 2

1 1 3

4 1 3

5 1 3

2 3

1 1 2

2 1 2

3 1 2

0 0

Sample Output

3

4

4

2

8165 Justified Jungle
As you probably know, a tree is a graph consisting of n nodes and n−1 undirected edges in which
any two nodes are connected by exactly one path. A forest is a graph consisting of one or more trees.
In other words, a graph is a forest if every connected component is a tree. A forest is justified if all
connected components have the same number of nodes.

Given a tree G consisting of n nodes, find all positive integers k such that a justified forest can
be obtained by erasing exactly k edges from G. Note that erasing an edge never erases any nodes. In
particular when we erase all n−1 edges from G, we obtain a justified forest consisting of n one-node
components.

Input
The input file contains several test cases, each of them as described below.

The first line contains an integer n (2 ≤ n ≤ 1000000) — the number of nodes in G. The k-th of
the following n−1 lines contains two different integers ak and bk (1 ≤ ak, bk ≤ n) — the endpoints of
the k-th edge.

Output
For each test case, on a line by itself, should contain all wanted integers k, in increasing order.

Note: Figures depict justified forests obtained by erasing 1, 3 and 7 edges from the tree in the example
input.

Sample Input
8
1 2
2 3
1 4
4 5
6 7
8 3
7 3

Sample Output
1 3 7

7209 Galactic taxes
The year is 2115. The Interplanetary Commercial Planning Center (ICPC) is supported by the Au-
tonomous Communication Ministry (ACM).

A commercial operation is performed executing transactions between connected ACM offices
throughout the galaxy. The execution of a transaction between two connected ACM offices involves
a non-negative tax whose value increases, or decreases, continuously as a linear function A × t + B of
time t, where t is a real number measured in minutes during the day (0 ≤ t ≤ 24× 60).

The total tax of a commercial operation performed between a source ACM office and a destination
ACM office at some time t, is calculated as the minimum possible sum of the taxes of the executed
transactions between the ACM offices visited along some path from the source ACM office to the
destination ACM office. The tax of each transaction is calculated at the same time t.

Since the tax of the transactions between connected ACM offices is continually changing during the
day, it would be better to perform the commercial operation at some specific time in the day, in order
to maximize the collected tax. At that time, ACM decides to perform the commercial operation, and
not before or after.

Your task is to write a program that receives as input the description of the ACM office network
and returns as output the maximum total tax of the commercial operation that can be achieved during
the day, that is, the maximum total tax that ACM can collect.

Input
The input contains several test cases; each test case is formatted as follows. The first line contains two
integers N and M , representing respectively the number of ACM offices in the network, and the number
of connections (2 ≤ N ≤ 1000 and 1 ≤ M ≤ 104). The ACM offices are identified with distinct integers
from 1 to N , being 1 the source ACM office and N the destination ACM office. Each of the next M

lines describes a connection with four integers I, J , A and B, indicating that there is a bidirectional
connection between office I and office J (1 ≤ I < J ≤ N), such that the tax of a transaction executed
between office I and office J at time t is defined by the formula A × t + B (−100 ≤ A ≤ 100 and
0 ≤ B ≤ 106). Taxes are non-negative, so A × t + B ≥ 0 for 0 ≤ t ≤ 24 × 60. There is at most one
connection between each pair of ACM offices, and there is at least one path between the source ACM
office and the destination ACM office.

Output
For each test case in the input, output a line with a rational number representing the maximum total
tax that ACM can collect. The result must be output as a rational number with exactly five digits after
the decimal point, rounded if necessary.

Sample Input
2 1
1 2 1 0
5 8
1 2 27 610658
2 3 -48 529553
3 4 -6 174696
4 5 47 158238

ACM-ICPC Live Archive: 7209 – Galactic taxes 2/2

3 5 84 460166
1 3 -21 74502
2 4 -13 858673
1 5 -90 473410
3 3
1 2 1 0
2 3 1 0
1 3 -1 1440
4 5
1 2 1 0
2 4 2 0
1 4 0 500
1 3 -1 1440
3 4 -2 2880
2 1
1 2 0 0

Sample Output
1440.00000
419431.27273
960.00000
500.00000
0.00000

