
Calculate
R := BP mod M

for large values of B, P , and M using an efficient algorithm. (That’s right, this problem has a time
dependency !!!.)

Input
The input will contain several test cases, each of them as described below. Consecutive test cases are
separated by a single blank line.

Three integer values (in the order B, P , M) will be read one number per line. B and P are integers
in the range 0 to 2147483647 inclusive. M is an integer in the range 1 to 46340 inclusive.

Output
For each test, the result of the computation. A single integer on a line by itself.

Sample Input
3
18132
17

17
1765
3

2374859
3029382
36123

Sample Output
13
2
13195

My birthday is coming up and traditionally I’m
serving pie. Not just one pie, no, I have a number
N of them, of various tastes and of various sizes. F
of my friends are coming to my party and each of
them gets a piece of pie. This should be one piece
of one pie, not several small pieces since that looks
messy. This piece can be one whole pie though.

My friends are very annoying and if one of them
gets a bigger piece than the others, they start com-
plaining. Therefore all of them should get equally
sized (but not necessarily equally shaped) pieces,
even if this leads to some pie getting spoiled (which
is better than spoiling the party). Of course, I want
a piece of pie for myself too, and that piece should also be of the same size.

What is the largest possible piece size all of us can get? All the pies are cylindrical in shape and
they all have the same height 1, but the radii of the pies can be different.

Input

One line with a positive integer: the number of test cases. Then for each test case:

• One line with two integers N and F with 1 ≤ N , F ≤ 10000: the number of pies and the number
of friends.

• One line with N integers ri with 1 ≤ ri ≤ 10000: the radii of the pies.

Output

For each test case, output one line with the largest possible volume V such that me and my friends can
all get a pie piece of size V . The answer should be given as a oating point number with an absolute
error of at most 10−3.

Sample Input

3

3 3

4 3 3

1 24

5

10 5

1 4 2 3 4 5 6 5 4 2

Sample Output

25.1327

3.1416

50.2655

Whittington’s cat is very well trained

Whittington is showing his trained cat in
its surprising feat of going from A to Z,
grabbing all the mice in his way while
stepping on each circle just once.

You receive an arbitrary, undirected
graph, where each node is identifed by a
single uppercase letter. One vertex is the
source, or starting point, and the other is
the target, or end point.

Your job is to imitate the cat’s abil-
ity, and identify a path that goes from the
source to the target, visiting each node in
the graph exactly once. If there is more
than one valid path, choose the lexico-
graphically lowest one.

Input

Input starts with a positive integer T , that denotes the number of test cases.
There’s a blank line at the beginning of each case. Then two integers are given in a single line:

N and M , representing the number of nodes and the number of bi-directional edges in the graph,
respectively. You can assume that there is at most one edge between any pair of nodes, and that each
edge will be reported only once.

The next line will contain N distinct letters, separated by spaces, which are the identifers for all
the nodes in the graph. The frst letter in this list will be the source, the last letter will be the target.
All letters will be uppercase letters from the English alphabet.

Then M lines will be presented, describing the edges of the graph. Each of these lines contain two
distinct letters, which describe two nodes that are connected by an edge.

T ≤ 60; 2 ≤ N ≤ 15

Output

For each test case, print the case number, followed by the sequence of letters that describe the path
from the source to the target, visiting all nodes exactly once.

If a valid solution doesn’t exist, print the word ‘impossible’.

Sample Input

3

12 14

A B C D E F U V W X Y Z

A F

A V

B U

B W

C D

C V

D Y

D W

E X

E Z

F U

F Y

U Z

W X

3 2

A B C

A B

A C

4 5

L N I K

L N

I L

I N

K N

K I

Sample Output

Case 1: AVCDYFUBWXEZ

Case 2: impossible

Case 3: LINK

A set of laboratory mice is being trained to escape a maze. The
maze is made up of cells, and each cell is connected to some
other cells. However, there are obstacles in the passage
between cells and therefore there is a time penalty to
overcome the passage Also, some passages allow mice to go
one-way, but not the other way round.

Suppose that all mice are now trained and, when placed in an
arbitrary cell in the maze, take a path that leads them to the
exit cell in minimum time.

We are going to conduct the following experiment: a mouse is
placed in each cell of the maze and a count-down timer is
started. When the timer stops we count the number of mice
out of the maze.

Problem

Write a program that, given a description of the maze and the
time limit, predicts the number of mice that will exit the maze.
Assume that there are no bottlenecks is the maze, i.e. that all
cells have room for an arbitrary number of mice.

Input

The maze cells are numbered , where is the
total number of cells. You can assume that .

The first three input lines contain , the number of cells in
the maze, , the number of the exit cell, and the starting
value for the count-down timer (in some arbitrary time unit).

The fourth line contains the number of connections in the
maze, and is followed by lines, each specifying a
connection with three integer numbers: two cell numbers
and (in the range) and the number of time units it

1, 2, … , N N
N ≤ 100

N
E

T

M
M

a
b 1, … , N

https://vjudge.net/problem/description/15899?15...

1 of 2 1/21/19, 11:47 PM

takes to travel from to .

Notice that each connection is one-way, i.e., the mice can't
travel from to unless there is another line specifying that
passage. Notice also that the time required to travel in each
direction might be different.

Output

The output consists of a single line with the number of mice
that reached the exit cell in at most time units.

Example

Input:
4
2
1
8
1 2 1
1 3 1
2 1 1
2 4 1
3 1 1
3 4 1
4 2 1
4 3 1

Output:
3

a b

b a

E T

https://vjudge.net/problem/description/15899?15...

2 of 2 1/21/19, 11:47 PM

Your task is to write a program that reads a chess board configuration and answers if there’s a king
under attack (i.e. “in check”). A king is in check if it’s in a square which is attacked by an oponnet’s
piece (i.e. it’s in square which can be taken by an oponnet’s piece in his next move).

White pieces will be represented by uppercase letters whereas black pieces will be represented by
lowercase letters. White side will always be on the bottom of the board and black side will always be
on the top of the board.

For those unfamiliar with chess, here are the movements of each piece:

Pawn (p or P): can only move straight ahead, one square at a time. But it takes pieces diagonally
(and that’s what concerns to you in this problem).

Knight (n or N) : have a special movement and it’s the only piece that can jump over other pieces.
The knight movement can be viewed as an “L”. See the example bellow.

Bishop (b or B) : can move any number of squares diagonally (forward or backward).

Rook (r or R) : can move any number of squares vertically or horizontally (forward or backward).

Queen (q or Q) : can move any number of squares in any direction (diagonally, horizontally or verti-
cally, forward or backward).

King (k or K) : can move one square at a time, in any direction (diagonally, horizontally or vertically,
forward or backward).

Movements examples (‘*’ indicates where the piece can take another pieces):

Pawn Rook Bishop Queen King Knight

........ ...*....* ...*...*

........ ...*.... *.....*. *..*..*.

........ ...*.... .*...*.. .*.*.*..*.*...

........ ...*.... ..*.*... ..***... ..***... .*...*..

...p.... ***r**** ...b.... ***q**** ..*k*... ...n....

..*.*... ...*.... ..*.*... ..***... ..***... .*...*..

........ ...*.... .*...*.. .*.*.*..*.*...

........ ...*.... *.....*. *..*..*.

Remember that the knight is the only piece that can jumper over other pieces. The pawn movement
will depend on its side. If it’s a black pawn, it can only move one square diagonally down the board. If
it’s a white pawn, it can only move one square diagonally up the board. The example above is a black
pawn as it’s a lowercase ‘p’ (we say “move” meaning the squares where the pawn can move to when it
takes another piece).

Input

There will be an arbitrary number of board configurations on the input. Each board will consist of
8 lines of 8 characters each. A ‘.’ character will represent an empty square. Upper and lower case
letters (as defined above) will represent the pieces. There will be no invalid characters (i.e. pieces) and
there won’t be a configuration where both kings are in check. You must read until you find an empty
board (i.e. a board that is formed only of ‘.’ characters) which should not be processed. There will be
an empty line between each pair of board configurations. In all boards (except the last one which is
empty) will appear both the white king and the black king (one, and only one of each).

Output

For each board configuration read you must output one of the following answers:

Game #d: white king is in check.

Game #d: black king is in check.

Game #d: no king is in check.

Where d stands for the game number (starting from 1).

Sample Input

..k.....

ppp.pppp

........

.R...B..

........

........

PPPPPPPP

K.......

rnbqkbnr

pppppppp

........

........

........

........

PPPPPPPP

RNBQKBNR

rnbqk.nr

ppp..ppp

....p...

...p....

.bPP....

.....N..

PP..PPPP

RNBQKB.R

........

........

........

........

........

........

........

........

Sample Output

Game #1: black king is in check.

Game #2: no king is in check.

Game #3: white king is in check.

As you may know, balloons are handed out during ACM
contests to teams as they solve problems. However, this
sometimes presents logistical challenges. In particular, one
contest hosting site maintains two rooms, A and B, each
containing a supply of balloons. There are N teams attending
the contest at that site, each sitting at a different location.
Some are closer to room A, others are closer to room B, and
others are equally distant. Given the number of balloons
needed by each team and the distance from each team to room
A, and to room B, what is the minimum total possible distance
that must be traveled by all balloons as they are delivered to
their respective teams, assuming they are allocated in an
optimal fashion from rooms A and B? For the purposes of this
problem, assume that all of the balloons are identical.

Input

There will be several test cases in the input. Each test case
will begin with a line with three integers:

N A B

Where N is the number of teams (1 ≤ N ≤ 1,000), and A and B
are the number of balloons in rooms A and B, respectively (0 ≤
A,B ≤ 10,000). On each of the next N lines there will be three
integers, representing information for each team:

K DA DB

Where K is the total number of balloons that this team will
need, DA is the distance of this team from room A, and DB is
this team’s distance from room B (0 ≤ DA,DB ≤ 1,000). You
may assume that there are enough balloons – that is, Σ(K’s) ≤
A+B. The input will end with a line with three 0s.

Output

https://vjudge.net/problem/description/55780?15...

1 of 2 1/21/19, 11:49 PM

For each test case, output a single integer, representing the
minimum total distance that must be traveled to deliver all of
the balloons. Count only the outbound trip, from room A or
room B to the team. Don’t count the distance that a runner
must travel to return to room A or room B. Print each integer
on its own line with no spaces. Do not print any blank lines
between answers.

Example

Input:
3 15 35
10 20 10
10 10 30
10 40 10
0 0 0
Output:
300

https://vjudge.net/problem/description/55780?15...

2 of 2 1/21/19, 11:49 PM

Kaunas University of Technology has bought a new light toggling system from one of the cheapest
manufacturers in China. It consists of N lamps and M switches. Each switch has a subset of lights
assigned to it, and when toggled, it changes the state of all the lights in the subset from on to off and
vice versa. Also the system contains the main switch which is used to turn turn off all lights.

The authorities installed the switches at different locations in the univerisity. But one day the main
switch went down. Now they are not able to turn off all lights by using the main switch. Unfortunately
noone understands the Chineese documentation of the system, so we must wait for support from
manufacturers. But we have good programmers, and we are interested in finding the minimal number
of switches required to turn off all lights in the university. Initially, all lights are turned on.

Input

The first line of input contains the number of tests T (T ≤ 50). Each test case is a set of lines. First
line of each test case contains 2 positive integers N (N ≤ 15) and M (M ≤ 100) separated by a space
character. Next M lines contain N integers K (Ki ∈ {1, 0}) separated by a space character (if the i-th
integer is 1 then the i-th light is toggled by the switch).

Output

For each test case output a single line ‘Case T: N ’. Where T is the test case number (starting from
1) and N is the minimal number of switches required. If it is impossible to turn off all lights N should
be equal to ‘IMPOSSIBLE’.

Sample Input

2

2 2

0 1

1 0

3 2

1 0 1

1 1 0

Sample Output

Case 1: 2

Case 2: IMPOSSIBLE

You have a rectangular chocolate bar consisting of n × m
single squares. You want to eat exactly k squares, so you may
need to break the chocolate bar.

In one move you can break any single rectangular piece of
chocolate in two rectangular pieces. You can break only by
lines between squares: horizontally or vertically. The cost of
breaking is equal to square of the break length.

For example, if you have a chocolate bar consisting of 2 × 3
unit squares then you can break it horizontally and get two 1 

× 3 pieces (the cost of such breaking is 32 = 9), or you can
break it vertically in two ways and get two pieces: 2 × 1 and 2 

× 2 (the cost of such breaking is 22 = 4).

For several given values n, m and k find the minimum total
cost of breaking. You can eat exactly k squares of chocolate if
after all operations of breaking there is a set of rectangular
pieces of chocolate with the total size equal to k squares. The
remaining n·m - k squares are not necessarily form a single
rectangular piece.

Input

The first line of the input contains a single integer t (1 ≤ t ≤ 
40910) — the number of values n, m and k to process.

Each of the next t lines contains three integers n, m and k (1 ≤ 
n, m ≤ 30, 1 ≤ k ≤ min(n·m, 50)) — the dimensions of the
chocolate bar and the number of squares you want to eat
respectively.

Output

https://vjudge.net/problem/description/58008?15...

1 of 2 1/21/19, 11:51 PM

For each n, m and k print the minimum total cost needed to
break the chocolate bar, in order to make it possible to eat
exactly k squares.

Examples

Input

4
2 2 1
2 2 3
2 2 2
2 2 4

Note

In the first query of the sample one needs to perform two
breaks:

to split 2 × 2 bar into two pieces of 2 × 1 (cost is 22 = 4),

to split the resulting 2 × 1 into two 1 × 1 pieces (cost is 12

= 1).

In the second query of the sample one wants to eat 3 unit
squares. One can use exactly the same strategy as in the first
query of the sample.

Output

5
5
4
0

https://vjudge.net/problem/description/58008?15...

2 of 2 1/21/19, 11:51 PM

