
6134 Different Digits

The inhabitants of Nlogonia are very superstitious. One of their beliefs is that street house numbers
that have a repeated digit bring bad luck for the residents. Therefore, they would never live in a house
which has a street number like 838 or 1004.

The Queen of Nlogonia ordered a new seaside avenue to be built, and wants to assign to the new
houses only numbers without repeated digits, to avoid discomfort among her subjects. You have been
appointed by Her Majesty to write a program that, given two integers N and M , determines the
maximum number of houses that can be assigned street numbers between N and M , inclusive, that do
not have repeated digits.

Input

Each test case is described using one line. The line contains two integers N and M , as described above
(1 ≤ N ≤ M ≤ 5000).

Output

For each test case output a line with an integer representing the number of street house numbers
between N and M , inclusive, with no repeated digits.

Sample Input

87 104

989 1022

22 25

1234 1234

Sample Output

14

0

3

1

6138 Hours and Minutes

Heidi has a discrete analog clock in the shape of a circle, as the one in the
figure. Two hands rotate around the center of the circle, indicating hours
and minutes. The clock has 60 marks placed around its perimeter, with the
distance between consecutive marks being constant.

The minute hand moves from its current mark to the next exactly once
every minute. The hour hand moves from its current mark to the next exactly
once every 12 minutes, so it advances five marks each hour.

We consider that both hands move discretely and instantly, which means
they are always positioned exactly over one of the marks and never in between
marks.

At midnight both hands reach simultaneously the top mark, which indicates zero hours and zero
minutes. After exactly 12 hours or 720 minutes, both hands reach the same position again, and this
process is repeated over and over again. Note that when the minute hand moves, the hour hand may
not move; however, when the hour hand moves, the minute hand also moves.

Heidi likes geometry, and she likes to measure the minimum angle between the two hands of the clock
at different times of the day. She has been writing some measures down, but after several years and a
long list, she noticed that some angles were repeated while some others never appeared. For instance,
Heidi’s list indicates that both at three o’clock and at nine o’clock the minimum angle between the two
hands is 90 degrees, while an angle of 65 degrees does not appear in the list. Heidi decided to check,
for any integer number A between 0 and 180, if there exists at least one time of the day such that the
minimum angle between the two hands of the clock is exactly A degrees. Help her with a program that
answers this question.

Input

Each test case is described using one line. The line contains an integer A representing the angle to be
checked (0 ≤ A ≤ 180).

Output

For each test case output a line containing a character. If there exists at least one time of the day
such that the minimum angle between the two hands of the clock is exactly A degrees, then write the
uppercase letter ‘Y’. Otherwise write the uppercase letter ‘N’.

Sample Input

90

65

66

67

128

0

180

ACM-ICPC Live Archive: 6138 – Hours and Minutes 2/2

Sample Output

Y

N

Y

N

N

Y

Y

7582 Oil
A large part of the world economy depends on oil, which is why research into new methods for finding
and extracting oil is still active. Profits of oil companies depend in part on how efficiently they can
drill for oil. The International Crude Petroleum Consortium (ICPC) hopes that extensive computer
simulations will make it easier to determine how to drill oil wells in the best possible way.

Drilling oil wells optimally is getting harder each day — the newly discovered oil deposits often do
not form a single body, but are split into many parts. The ICPC is currently concerned with stratified
deposits, as illustrated in Figure G.1.

Figure G.1: Oil layers buried in the earth. This figure corresponds to Sample Input 1.

To simplify its analysis, the ICPC considers only the 2-dimensional case, where oil deposits are
modeled as horizontal line segments parallel to the earth’s surface. The ICPC wants to know how to
place a single oil well to extract the maximum amount of oil. The oil well is drilled from the surface
along a straight line and can extract oil from all deposits that it intersects on its way down, even if the
intersection is at an endpoint of a deposit. One such well is shown as a dashed line in Figure G.1, hitting
three deposits. In this simple model the amount of oil contained in a deposit is equal to the width of
the deposit. Can you help the ICPC determine the maximum amount of oil that can be extracted by
a single well?

Input
The input file contains several test cases, each of them as described below.

The first line of input contains a single integer n (1 ≤ n ≤ 2000), which is the number of oil
deposits. This is followed by n lines, each describing a single deposit. These lines contain three integers
x0, x1, and y giving the deposit’s position as the line segment with endpoints (x0, y) and (x1, y). These
numbers satisfy |x0|, |x1| ≤ 106 and 1 ≤ y ≤ 106. No two deposits will intersect, not even at a point.

Output
For each test case, display the maximum amount of oil that can be extracted by a single oil well on a
line by itself.

ACM-ICPC Live Archive: 7582 – Oil 2/2

Sample Input
5
100 180 20
30 60 30
70 110 40
10 40 50
0 80 70
3
50 60 10
-42 -42 20
25 0 10

Sample Output
200
25

6763 Modified LCS

LCS stands for longest common subsequence, and it is a well known problem. A sequence in this
problem means a list of integers, and a sequence X is considered a subsequence of another sequence Y ,
when the sequence X can be obtained by deleting zero or more elements from the sequence Y without
changing the order of the remaining elements.

In this problem you are given two sequences and your task is to find the length of the longest
sequence which is a subsequence of both the given sequences.

You are not given the sequences themselves. For each sequence you are given three integers N , F
and D, where N is the length of the sequence, F is the first element in the sequence. Each element
except the first element is greater than the element before it by D.

For example N = 5, F = 3 and D = 4 represents the following sequence: [3, 7, 11, 15, 19].
There will be at least one integer which belongs to both sequences and it is not greater than

1,000,000.

Input

Your program will be tested on one or more test cases. The first line of the input will be a single integer
T , the number of test cases (1 ≤ T ≤ 100). Followed by the test cases, each test case is described in one
line which contains 6 integers separated by a single space N1 F1 D1 N2 F2 D2 (1 ≤ N1, N2 ≤ 1018)
and (1 ≤ F1, D1, F2, D2 ≤ 109) representing the length of the first sequence, the first element in the
first sequence, the incremental value of the first sequence, the length of the second sequence, the first
element in the second sequence and the incremental value of the second sequence, respectively.

Output

For each test case, print a single line which contains a single integer representing the length of the
longest common subsequence between the given two sequences.

Sample Input

3

5 3 4 15 3 1

10 2 2 7 3 3

100 1 1 100 1 2

Sample Output

4

3

50

6829 Intrepid climber
Who would guess? You climbed the highest mountain of your city. You are so excited about it that
you need to tell it to all your friends, and you decided to start with those that are trying to be exactly
where you are at this precise moment.

The mountain has N landmarks, and one of them is the top of the mountain, where you are now.
Each of your friends that is climbing the mountain is in some other landmark, and you want to visit all
of them. There are tracks that connect pairs of landmarks in such a way that there exists exactly one
route (that is, a sequence of consecutive tracks) that goes down from the top of the mountain to each
other landmark. To visit two friends in two different landmarks, you may have to go down some tracks,
climb others, and go down others again. Going down the mountain is “easy”, so you do not consume
energy when you go down through the tracks. But each time you climb a track, you consume a certain
amount of energy. After visiting all your friends, you can just sit and rest.

For example, consider the mountain in the picture below, which has N = 6
landmarks. If your friends are in landmarks 5 and 2, you can visit both if you
follow the sequence of landmarks 1 ↓ 2 ↑ 1 ↓ 3 ↓ 5, where a ↓ b means that
you go down a track from landmark a to landmark b, and a ↑ b means that
you climb a track from landmark a to landmark b. Another possible sequence
is 1 ↓ 3 ↓ 5 ↑ 3 ↑ 1 ↓ 2.

Given the tracks between the landmarks, the energy required to climb
them, and the landmarks where your friends are, compute the minimum to-
tal amount of energy required to visit all your friends from the top of the
mountain.

Input
The input contains several test cases; each test case is formatted as follows. The first line contains
two integers N and F (1 ≤ F < N ≤ 105), representing respectively the number of landmarks and
the number of your friends that are climbing the mountain. Landmarks are identified with distinct
integers from 1 to N , being 1 the top of the mountain, where you initially are. Each of the next N − 1
lines describes a different track with three integers A, B and C, indicating that there is a track from
A to B that goes down and requires an amount C of energy to be climbed (1 ≤ A ≤ N , 2 ≤ B ≤ N ,
A ̸= B and 1 ≤ C ≤ 100). The next line contains F different integers L1, L2, …, LF (2 ≤ Li ≤ N for
i = 1, 2, . . . , F) representing the landmarks where your friends are. You may assume that the tracks
between landmarks are such that there exists exactly one route that goes down from the top of the
mountain to each other landmark.

Output
For each test case in the input, output a line with an integer representing the minimum total amount
of energy required to visit all your friends starting from the top of the mountain.

Sample Input
6 2
1 2 2
2 4 2
1 3 3

ACM-ICPC Live Archive: 6829 – Intrepid climber 2/2

3 6 3
3 5 1
5 2
4 2
1 2 2
1 3 1
3 4 2
2 4
4 2
1 4 1
1 3 1
4 2 2
2 4

Sample Output
2
2
0

2728 A Spy in the Metro
Secret agent Maria was sent to Algorithms City to carry out an especially dangerous mission. After
several thrilling events we find her in the first station of Algorithms City Metro, examining the time
table. The Algorithms City Metro consists of a single line with trains running both ways, so its time
table is not complicated.

Maria has an appointment with a local spy at the last station of Algorithms City Metro. Maria
knows that a powerful organization is after her. She also knows that while waiting at a station, she is
at great risk of being caught. To hide in a running train is much safer, so she decides to stay in running
trains as much as possible, even if this means traveling backward and forward. Maria needs to know
a schedule with minimal waiting time at the stations that gets her to the last station in time for her
appointment. You must write a program that finds the total waiting time in a best schedule for Maria.

The Algorithms City Metro system has N stations, consecutively numbered from 1 to N . Trains
move in both directions: from the first station to the last station and from the last station back to the
first station. The time required for a train to travel between two consecutive stations is fixed since all
trains move at the same speed. Trains make a very short stop at each station, which you can ignore for
simplicity. Since she is a very fast agent, Maria can always change trains at a station even if the trains
involved stop in that station at the same time.

Input
The input file contains several test cases. Each test case consists of seven lines with information as
follows.

Line 1. The integer N (2 ≤ N ≤ 50), which is the number of stations.

Line 2. The integer T (0 ≤ T ≤ 200), which is the time of the appointment.

Line 3. N − 1 integers: t1, t2, . . . , tN−1 (1 ≤ ti ≤ 20), representing the travel times for the trains
between two consecutive stations: t1 represents the travel time between the first two stations, t2
the time between the second and the third station, and so on.

Line 4. The integer M1 (1 ≤ M1 ≤ 50), representing the number of trains departing from the first
station.

Line 5. M1 integers: d1, d2, . . . , dM1 (0 ≤ di ≤ 250 and di < di+1), representing the times at which
trains depart from the first station.

ACM-ICPC Live Archive: 2728 – A Spy in the Metro 2/2

Line 6. The integer M2 (1 ≤ M2 ≤ 50), representing the number of trains departing from the N -th
station.

Line 7. M2 integers: e1, e2, . . . , eM2 (0 ≤ ei ≤ 250 and ei < ei+1) representing the times at which
trains depart from the N -th station.

The last case is followed by a line containing a single zero.

Output
For each test case, print a line containing the case number (starting with 1) and an integer representing
the total waiting time in the stations for a best schedule, or the word ‘impossible’ in case Maria is
unable to make the appointment. Use the format of the sample output.

Sample Input
4
55
5 10 15
4
0 5 10 20
4
0 5 10 15
4
18
1 2 3
5
0 3 6 10 12
6
0 3 5 7 12 15
2
30
20
1
20
7
1 3 5 7 11 13 17
0

Sample Output
Case Number 1: 5
Case Number 2: 0
Case Number 3: impossible

5790 Ball Stacking
The XYZ TV channel is developing a new game show, where a con-
testant has to make some choices in order to get a prize. The game
consists of a triangular stack of balls, each of them having an integer
value, as the following example shows.

The contestant must choose which balls he is going to take and his
prize is the sum of the values of those balls. However, the contestant
can take any given ball only if he also takes the balls directly on top of
it. This may require taking additional balls using the same rule. Notice
that the contestant may choose not to take any ball, in which case the
prize is zero.

The TV show director is concerned about the maximum prize a contestant can make for a given
stack. Since he is your boss and he does not know how to answer this question, he assigned this task
to you.

Input
Each test case is described using several lines. The first line contains an integer N representing the
number of rows of the stack (1 ≤ N ≤ 1000). The i-th of the next N lines contains i integers Bij

(−105 ≤ Bij ≤ 105 for 1 ≤ j ≤ i ≤ N); the number Bij is the value of the j-th ball in the i-th row of
the stack (the first row is the topmost one, and within each row the first ball if the leftmost one).

The last test case is followed by a line containing one zero.

Output
For each test case output a line with an integer representing the maximum prize a contestant can make
from the stack.

Sample Input
4
3
-5 3
-8 2 -8
3 9 -2 7
2
-2
1 -10
3
1
-5 3
6 -4 1
0

Sample Output
7
0

ACM-ICPC Live Archive: 5790 – Ball Stacking 2/2

6

7893 Hotel Rewards
You are planning to spend your holidays touring Europe, staying each night in a different city for N
consecutive nights. You have already chosen the hotel you want to stay in for each city, so you know
the price Pi of the room you’ll be staying at during the i-th night of your holidays, for i = 1, . . . , N .

You will book your accommodation through a website that has a very convenient rewards program,
which works as follows. After staying for a night in a hotel you booked through this website you are
awarded one point, and at any time you can exchange K of these points in your account for a free night
in any hotel (which will however not give you another point).

For example, consider the case with N = 6 and K = 2 where the prices for the rooms are P1 = 10,
P2 = 3, P3 = 12, P4 = 15, P5 = 12 and P6 = 18. After paying for the first four nights you would have
four points in your account, which you could exchange to stay for free the remaining two nights, paying
a total of P1 + P2 + P3 + P4 = 40 for your accommodation. However, if after the first three nights
you use two of the three points you earned to stay the fourth night for free, then you can pay for the
fifth night and use the final two points to get the sixth one for free. In this case, the total cost of your
accommodation is P1 + P2 + P3 + P5 = 37, so this option is actually more convenient.

You want to make a program to find out what the minimum possible cost for your holidays’ accom-
modation is. You can safely assume that all hotels you want to stay always will have a room available
for you, and that the order of the cities you are going to visit cannot be altered.

Input
The input file contains several test cases, each of them as described below.

The first line of input contains two integers N and K, representing the total number of nights your
holidays will last, and the number of points you need in order to get a free night (1 ≤ N,K ≤ 105). The
second line contains N integers P1, P2, . . . , PN , representing the price of the rooms you will be staying
at during your holidays (1 ≤ Pi ≤ 104 for i = 1, 2, . . . , N).

Output
For each test case, output a line with one integer representing the minimum cost of your accommodation
for all of your holidays.

Sample Input
6 2
10 3 12 15 12 18
6 1
10 3 12 15 12 18
5 5
1 2 3 4 5

Sample Output
37
25
15

Problem A
Catch the Plane

Time limit: 10 seconds

Your plane to the ICPC Finals departs in a short time, and the only way to get to the airport is by bus.
Unfortunately, some of the bus drivers are considering going on strike, so you do not know whether
you can get to the airport on time. Your goal is to plan your journey in such a way as to maximize the
probability of catching your plane.

You have a detailed map of the city, which includes all the bus stations. You are at station 0 and the
airport is at station 1. You also have a complete schedule of when each bus leaves its start station and
arrives at its destination station. Additionally, for each bus you know the probability that it is actually
going to run as scheduled, as opposed to its driver going on strike and taking the bus out of service.
Assume all these events are independent. That is, the probability of a given bus running as planned does
not change if you know whether any of the other buses run as planned.

If you arrive before the departure time of a bus, you can transfer to that bus. But if you arrive exactly
at the departure time, you will not have enough time to get on the bus. You cannot verify ahead of time
whether a given bus will run as planned – you will find out only when you try to get on the bus. So if
two or more buses leave a station at the same time, you can try to get on only one of them.

20%

Bus Schedule

Start

Station

Destination

Station

Departure

Time
Arrival

Time

0

0

2

2

0

3

3

0

1

2

1

1

3

1

0

1

0

100

500

501

200

500

550

700

900

500

700

701

400

800

650

900

10%

50%

10%
90%

10%

Figure A.1: Bus schedule corresponding to Sample Input 1.

Consider the bus schedule shown in Figure A.1. It lists the start and destination stations of several bus
routes along with the departure and arrival times. You have written next to some of these the probability
that that route will run. Bus routes with no probability written next to them have a 100% chance of
running. You can try catching the first listed bus. If it runs, it will take you straight to the airport, and
you can stop worrying. If it does not, things get more tricky. You could get on the second listed bus to
station 2. It is certain to leave, but you would be too late to catch the third listed bus which otherwise
would have delivered you to the airport on time. The fourth listed bus – which you can catch – has only
a 0.1 probability of actually running. That is a bad bet, so it is better to stay at station 0 and wait for
the fifth listed bus. If you catch it, you can try to get onto the sixth listed bus to the airport; if that does
not run, you still have the chance of returning to station 0 and catching the last listed bus straight to the
airport.

ACM-ICPC World Finals 2018 Problem A: Catch the Plane 1

Input

The first line of input contains two integers m (1 ≤ m ≤ 106) and n (2 ≤ n ≤ 106), denoting the number
of buses and the number of stations in the city. The next line contains one integer k (1 ≤ k ≤ 1018),
denoting the time by which you must arrive at the airport.

Each of the next m lines describes one bus. Each line contains integers a and b (0 ≤ a, b < n, a 6= b),
denoting the start and destination stations for the bus. Next are integers s and t (0 ≤ s < t ≤ k),
giving the departure time from station a and the arrival time at station b. The last value on the line is p
(0 ≤ p ≤ 1, with at most 10 digits after the decimal point), which denotes the probability that the bus
will run as planned.

Output

Display the probability that you will catch your plane, assuming you follow an optimal course of action.
Your answer must be correct to within an absolute error of 10−6.

Sample Input 1 Sample Output 1

8 4
1000
0 1 0 900 0.2
0 2 100 500 1.0
2 1 500 700 1.0
2 1 501 701 0.1
0 3 200 400 0.5
3 1 500 800 0.1
3 0 550 650 0.9
0 1 700 900 0.1

0.3124

Sample Input 2 Sample Output 2

4 2
2
0 1 0 1 0.5
0 1 0 1 0.5
0 1 1 2 0.4
0 1 1 2 0.2

0.7

ACM-ICPC World Finals 2018 Problem A: Catch the Plane 2

5133 Machine Works
You are the director of Arbitrarily Complex Machines (ACM for short), a company producing advanced
machinery using even more advanced machinery. The old production machinery has broken down, so
you need to buy new production machines for the company. Your goal is to make as much money as
possible during the restructuring period. During this period you will be able to buy and sell machines
and operate them for profit while ACM owns them. Due to space restrictions, ACM can own at most
one machine at a time.

During the restructuring period, there will be several machines for sale. Being an expert in the
advanced machines market, you already know the price Pi and the availability day Di for each machines
Mi . Note that if you do not buy machine Mi on day Di, then somebody else will buy it and it will not
be available later. Needless to say, you cannot buy a machine if ACM has less money than the price of
the machine.

If you buy a machine Mi on day Di, then ACM can operate it starting on day Di + 1. Each day
that the machine operates, it produces a profit of Gi dollars for the company.

You may decide to sell a machine to reclaim a part of its purchase price any day after you’ve bought
it. Each machine has a resale price Ri for which it may be resold to the market. You cannot operate
a machine on the day that you sell it, but you may sell a machine and use the proceeds to buy a new
machine on the same day.

Once the restructuring period ends, ACM will sell any machine that it still owns. Your task is to
maximize the amount of money that ACM makes during the restructuring.

Input
The input consists of several test cases. Each test case starts with a line containing three positive
integers N , C, and D. N is the number of machines for sale (N ≤ 105), C is the number of dollars
with which the company begins the restructuring (C ≤ 109), and D is the number of days that the
restructuring lasts (D ≤ 109).

Each of the next N lines describes a single machine for sale. Each line contains four integers Di,
Pi, Ri and Gi, denoting (respectively) the day on which the machine is for sale, the dollar price for
which it may be bought, the dollar price for which it may be resold and the daily profit generated by
operating the machine. These numbers satisfy 1 ≤ Di ≤ D, 1 ≤ Ri < Pi ≤ 109 and 1 ≤ Gi ≤ 109.

The last test case is followed by a line containing three zeros.

Output
For each test case, display its case number followed by the largest number of dollars that ACM can
have at the end of day D + 1.

Follow the format of the sample output.

Sample Input
6 10 20
6 12 1 3
1 9 1 2
3 2 1 2
8 20 5 4
4 11 7 4

ACM-ICPC Live Archive: 5133 – Machine Works 2/2

2 10 9 1
0 0 0

Sample Output
Case 1: 44

