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This text contains the brief description of several dynamic programming optimizations tech-
niques that often appear on programming competitions.

1 Optimum monotonocity / binary search / two pointers

Problem: professor lives in an n floor building and has k transistors. He knows that there
exists some floor ¢ (1 < i <n — 1) that if he throws a transistor from floor 7 or lower it won’t
be broken, and if he throws it from floor ¢ 4+ 1 or higher, it will definitely be broken. In which
smallest number of throws professor can determine that critical 7

DP: Din][k] is a minimum number of throws needed to professor to find out the critical 4
if he knows that floor [ is still OK, floor r is not OK, » — [ = n and he has k transistors left.
Then:

e DI1][k] = 0 since we already found the critical i;

o Dpnlli] = _min max(DYj[k — 1], Dln — )

This is an O(n?k) DP.

Optimization 1: f(j) = D[j|[k — 1] is decreasing, g(j) = D[n — j][k] is increasing, hence
max(D[j][k — 1], D[n — j][k]) decreases till some moment (while D[j][k — 1] > D[n — j][k]) and
then increases (in this statement terms “increasing/decreasing” allow equality, i.e. they are not
strict). Hence, we may find an optimum point optj[n|[k] as a root of a function f(j) — g(j) =
DIj]l[k — 1] — Din — j][k] using the binary search. This leads to an O(nklogn) solution.

Optimization 2: when we move from n to n+ 1, the function f(j) = D[j][k — 1] stays the
same and ¢(j) = D[n — j][k] is replaced with ¢*(j) = D[n + 1 — j|[k]. Note that ¢*(j) > g(4),
hence optj[n + 1][k] > optjn][k]. In order to calculate optj[n + 1][k], assign it to optj[n|[k] and
increase it until f(optj[n+ 1][k]) becomes smaller than g(optj[n+1][k]). This leads to an O(nk)
solution.

2 Convex hull trick (linear version)

Problem: You are given n numbers z1 < z9 < ... < x,, and a constant C. Choose some
subsequence of them y1,...,y; such that y; = x1, yx = x; and the value kil(yiﬂ — )2+ Ck
is as small as possible. A =

DP: Dli] is the smallest possible ]ii(yj+1 —y;)% 4+ Cj if y; = x; for some j. Then:
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This is an O(n?) solution.
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Let JSJ = (xj,D[j] + x?) Keep the lower hull of ]3] The j such that ]5; - U; — max is
always some point of a convex hull of {P;}; namely, the lower hull of those points because the
y-component of a vector v; in our case is negative.

Lower hull may be kept in the stack. New points are added to the right of the old ones
(since z; increases), so the stack may be recalculated in amortized O(1) (similar to the Andrew
monotone chain algorithm).

Optimum j may be find via the binary search over the convex hull since (]5;, ;) increases
up to some moment and then decreasing over all j belonging to the lower hull.

The complexity is O(nlogn).

Optimization 2: note that vector v; also moves to the right (its z-component increases).
It means that the pointer on the optimum point on lower hull also moves only to the right.
Keep the optimum pointer opt[i] and try to move it to the right while it is profitable when
moving from ¢ to ¢ + 1.

The complexity is O(n).

3 Divide and Conquer optimization

Problem: You are given n integers x1,z2,...,2,. Divide them into k consecutive groups
k
such that  w;log w; — min where w; is the sum in the k group.

=1
DP: DPJi|[j] is the minimum penalty for dividing first j numbers into ¢ groups. Then:
e DP[0][0] = 0;

e DPJi][j] = ming<,<j—1(DP[i —1][z] + (S[j] — S[z]) log(S[j] — S[z])) where S; = x1 +z2+
R Zj3

This is an O(n?k) soluition.

Optimization: notice the important property of optimal point monotonicity. Denote as
optz[i][j] the value of z that is the optimum for the expression above.

Lemma: optz[i|[j] < optz[i][j + 1].

Lemma proof: use induction and Karamata’s inequality.

Let’s calculate the i-th layer of DP using the following recursive procedure:



e void calc(i,l, )

e Pre-requisite: optz[i|[l — 1] and optz[i][r + 1] are already calculated (let optz[i][0] = 1 and
optz[il[n + 1] = n);

o If [ > r return;

e Let m = [(l+7)/2], calculate optz[i][m] by iterating with z between optz[i][l] and
optz[il[r];

e Make a recursive call of calc(i,l,m — 1) and calc(i,m + 1,7).

In total, each level of recursion works in O(n) and there are logn recursion levels. Hence,
everything works in O(nklogn).

4 Knuth optimization

Problem: You are given values x1, x9, ..., x,. Organize them into a binary tree (without
reordering) so that the sum of the values multiplied by their depths in the tree is as small as
possible.

DP: DJl][r] is the cost of the best tree that may be built over the elements from [-th to
r-th.

o D[l —1] = xy;

 DII[r) = min (DIl — 1)+ Dli+ )+ (@1-+ 141+ +2,)) = win (D — 1)+ Dli+

1[r] + (S[r] — S[l — 1])) where S[r] = 1 + 2 + ... + ;.

This is an O(n3) DP.

Optimization: Consider opti[l|[r] to be the optimum value of i for the formula above.

Lemma: opti[l][r — 1] < opti[l][r] < optill + 1][r].

Lemma proof: prove it by yourself. Prove the opti[l][r — 1] < opti[l][r] by contradiction,
consider the right path inside the optimum binary search tree. and find the contradiction.

Now, calculate DP in order of increasing r — [. Iterate with ¢ only in range [opti[l][r —
1], opti[l 4+ 1][r]]. Thus, the running time for a fixed » — I = d will be proportional to opti[d +
1][2] — opti[d][1] + opti[d + 2][3] — opti[d + 1][2] + ... + opti[n][n — d + 1] — opti[n — 1][n — d] =
optiln][n — d + 1] — opti[d][1] = O(n). So, the overall running time is O(n?).

5 Lagrange optimization

Problem: 1012016 Aliens [http://ioinformatics.org/locations/ioil6/contest/day2/
aliens.pdf]

DP and optimization: Refer to the analysis of the contest [http://ioinformatics.org/
locations/ioil6/contest/I0I2016_analysis.pdf]
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