
Dynamic programming optimizations

Maxim Akhmedov
Moscow State University, Yandex

January 27th, 2017

This text contains the brief description of several dynamic programming optimizations tech-
niques that often appear on programming competitions.

1 Optimum monotonocity / binary search / two pointers

Problem: professor lives in an n floor building and has k transistors. He knows that there
exists some floor i (1 ≤ i ≤ n − 1) that if he throws a transistor from floor i or lower it won’t
be broken, and if he throws it from floor i + 1 or higher, it will definitely be broken. In which
smallest number of throws professor can determine that critical i?

DP: D[n][k] is a minimum number of throws needed to professor to find out the critical i
if he knows that floor l is still OK, floor r is not OK, r − l = n and he has k transistors left.
Then:

• D[1][k] = 0 since we already found the critical i;

• D[n][k] = min
1≤j≤n−1

max(D[j][k − 1], D[n− j][k]);

This is an O(n2k) DP.
Optimization 1: f(j) = D[j][k − 1] is decreasing, g(j) = D[n − j][k] is increasing, hence

max(D[j][k − 1], D[n− j][k]) decreases till some moment (while D[j][k − 1] ≥ D[n− j][k]) and
then increases (in this statement terms “increasing/decreasing” allow equality, i.e. they are not
strict). Hence, we may find an optimum point optj[n][k] as a root of a function f(j)− g(j) =
D[j][k − 1]−D[n− j][k] using the binary search. This leads to an O(nk log n) solution.

Optimization 2: when we move from n to n+ 1, the function f(j) = D[j][k− 1] stays the
same and g(j) = D[n− j][k] is replaced with g∗(j) = D[n + 1− j][k]. Note that g∗(j) ≥ g(j),
hence optj[n+ 1][k] ≥ optj[n][k]. In order to calculate optj[n+ 1][k], assign it to optj[n][k] and
increase it until f(optj[n+1][k]) becomes smaller than g(optj[n+1][k]). This leads to an O(nk)
solution.

2 Convex hull trick (linear version)

Problem: You are given n numbers x1 < x2 < . . . < xn and a constant C. Choose some

subsequence of them y1, . . . , yk such that y1 = x1, yk = xk and the value
k−1∑
i=1

(yi+1 − yi)
2 + Ck

is as small as possible.

DP: D[i] is the smallest possible
j−1∑
i=1

(yj+1 − yj)
2 + Cj if yj = xi for some j. Then:

1

• D[1] = −C;

• D[i] = min
1≤j≤i−1

(D[j] + (xi − xj)
2 + C);

This is an O(n2) solution.
Optimization 1:

D[i] = min
1≤j≤i−1

(D[j] + (xi − xj)
2 + C) =

x2i + C + min
1≤j≤i−1

(D[j] + x2j − 2xixj) =

x2i + C + min
1≤j≤i−1

(xj , D[j] + x2j) · (−xi, 1)

x2i + C + max
1≤j≤i−1

(xj , D[j] + x2j) · (xi,−1)

Let ~Pj = (xj , D[j] + x2j). Keep the lower hull of ~Pj . The j such that ~Pj · ~vi → max is
always some point of a convex hull of {Pj}; namely, the lower hull of those points because the
y-component of a vector ~vi in our case is negative.

Lower hull may be kept in the stack. New points are added to the right of the old ones
(since xj increases), so the stack may be recalculated in amortized O(1) (similar to the Andrew
monotone chain algorithm).

Optimum j may be find via the binary search over the convex hull since (~Pj , ~vi) increases
up to some moment and then decreasing over all j belonging to the lower hull.

The complexity is O(n log n).
Optimization 2: note that vector ~vi also moves to the right (its x-component increases).

It means that the pointer on the optimum point on lower hull also moves only to the right.
Keep the optimum pointer opt[i] and try to move it to the right while it is profitable when
moving from i to i + 1.

The complexity is O(n).

3 Divide and Conquer optimization

Problem: You are given n integers x1, x2, . . . , xn. Divide them into k consecutive groups

such that
k∑

i=1
wi logwi → min where wi is the sum in the k group.

DP: DP [i][j] is the minimum penalty for dividing first j numbers into i groups. Then:

• DP [0][0] = 0;

• DP [i][j] = min0≤z≤j−1(DP [i− 1][z] + (S[j]−S[z]) log(S[j]−S[z])) where Sj = x1 +x2 +
. . . + xj ;

This is an O(n2k) soluition.
Optimization: notice the important property of optimal point monotonicity. Denote as

optz[i][j] the value of z that is the optimum for the expression above.
Lemma: optz[i][j] ≤ optz[i][j + 1].
Lemma proof : use induction and Karamata’s inequality.
Let’s calculate the i-th layer of DP using the following recursive procedure:

2

• void calc(i, l, r)

• Pre-requisite: optz[i][l− 1] and optz[i][r + 1] are already calculated (let optz[i][0] = 1 and
optz[i][n + 1] = n);

• If l > r, return;

• Let m = b(l + r)/2c, calculate optz[i][m] by iterating with z between optz[i][l] and
optz[i][r];

• Make a recursive call of calc(i, l,m− 1) and calc(i,m + 1, r).

In total, each level of recursion works in O(n) and there are logn recursion levels. Hence,
everything works in O(nk log n).

4 Knuth optimization

Problem: You are given values x1, x2, . . . , xn. Organize them into a binary tree (without
reordering) so that the sum of the values multiplied by their depths in the tree is as small as
possible.

DP: D[l][r] is the cost of the best tree that may be built over the elements from l-th to
r-th.

• D[l][l − 1] = xl;

• D[l][r] = min
l≤i≤r

(D[l][i− 1] +D[i+ 1][r] + (xl + xl+1 + . . .+ xr)) = min
l≤i≤r

(D[l][i− 1] +D[i+

1][r] + (S[r]− S[l − 1])) where S[r] = x1 + x2 + . . . + xr.

This is an O(n3) DP.
Optimization: Consider opti[l][r] to be the optimum value of i for the formula above.
Lemma: opti[l][r − 1] ≤ opti[l][r] ≤ opti[l + 1][r].
Lemma proof: prove it by yourself. Prove the opti[l][r − 1] ≤ opti[l][r] by contradiction,

consider the right path inside the optimum binary search tree. and find the contradiction.
Now, calculate DP in order of increasing r − l. Iterate with i only in range [opti[l][r −

1], opti[l + 1][r]]. Thus, the running time for a fixed r − l = d will be proportional to opti[d +
1][2]− opti[d][1] + opti[d + 2][3]− opti[d + 1][2] + . . . + opti[n][n− d + 1]− opti[n− 1][n− d] =
opti[n][n− d + 1]− opti[d][1] = O(n). So, the overall running time is O(n2).

5 Lagrange optimization

Problem: IOI2016 Aliens [http://ioinformatics.org/locations/ioi16/contest/day2/
aliens.pdf]

DP and optimization: Refer to the analysis of the contest [http://ioinformatics.org/
locations/ioi16/contest/IOI2016_analysis.pdf]

3

http://ioinformatics.org/locations/ioi16/contest/day2/aliens.pdf
http://ioinformatics.org/locations/ioi16/contest/day2/aliens.pdf
http://ioinformatics.org/locations/ioi16/contest/IOI2016_analysis.pdf
http://ioinformatics.org/locations/ioi16/contest/IOI2016_analysis.pdf

	Optimum monotonocity / binary search / two pointers
	Convex hull trick (linear version)
	Divide and Conquer optimization
	Knuth optimization
	Lagrange optimization

