Dynamic programming optimizations

Maxim Akhmedov
Moscow State University, Yandex
January 27th, 2017

This text contains the brief description of several dynamic programming optimizations techniques that often appear on programming competitions.

1 Optimum monotonicity / binary search / two pointers

Problem: professor lives in an n floor building and has k transistors. He knows that there exists some floor i ($1 \leq i \leq n - 1$) that if he throws a transistor from floor i or lower it won’t be broken, and if he throws it from floor $i + 1$ or higher, it will definitely be broken. In which smallest number of throws professor can determine that critical i?

DP: $D[n][k]$ is a minimum number of throws needed to professor to find out the critical i if he knows that floor l is still OK, floor r is not OK, $r - l = n$ and he has k transistors left.

Then:

- $D[1][k] = 0$ since we already found the critical i;
- $D[n][k] = \min_{1 \leq j \leq n-1} \max(D[j][k-1], D[n-j][k])$;

This is an $O(n^2k)$ DP.

Optimization 1: $f(j) = D[j][k-1]$ is decreasing, $g(j) = D[n-j][k]$ is increasing, hence $\max(D[j][k-1], D[n-j][k])$ decreases till some moment (while $D[j][k-1] \geq D[n-j][k]$) and then increases (in this statement terms “increasing/decreasing” allow equality, i.e. they are not strict). Hence, we may find an optimum point $optj[n][k]$ as a root of a function $f(j) - g(j) = D[j][k-1] - D[n-j][k]$ using the binary search. This leads to an $O(nk \log n)$ solution.

Optimization 2: when we move from n to $n + 1$, the function $f(j) = D[j][k-1]$ stays the same and $g(j) = D[n-j][k]$ is replaced with $g^*(j) = D[n+1-j][k]$. Note that $g^*(j) \geq g(j)$, hence $optj[n+1][k] \geq optj[n][k]$. In order to calculate $optj[n+1][k]$, assign it to $optj[n][k]$ and increase it until $f(optj[n+1][k])$ becomes smaller than $g(optj[n+1][k])$. This leads to an $O(nk)$ solution.

2 Convex hull trick (linear version)

Problem: You are given n numbers $x_1 < x_2 < \ldots < x_n$ and a constant C. Choose some subsequence of them y_1, \ldots, y_k such that $y_1 = x_1$, $y_k = x_k$ and the value $\sum_{i=1}^{k-1} (y_{i+1} - y_i)^2 + Ck$ is as small as possible.

DP: $D[i]$ is the smallest possible $\sum_{i=1}^{j-1} (y_{j+1} - y_j)^2 + Cj$ if $y_j = x_i$ for some j. Then:
\[D[1] = -C; \]
\[D[i] = \min_{1 \leq j \leq i-1} (D[j] + (x_i - x_j)^2 + C); \]

This is an \(O(n^2) \) solution.

Optimization 1:
\[
D[i] = \min_{1 \leq j \leq i-1} (D[j] + (x_i - x_j)^2 + C) = x_i^2 + C + \min_{1 \leq j \leq i-1} (D[j] + x_j^2 - 2x_ix_j) = x_i^2 + C + \min_{1 \leq j \leq i-1} (x_j, D[j] + x_j^2) \cdot (-x_i, 1) \]
\[
D[i] = x_i^2 + C + \max_{1 \leq j \leq i-1} (x_j, D[j] + x_j^2) \cdot (x_i, -1) \]

Let \(\vec{P}_j = (x_j, D[j] + x_j^2) \). Keep the lower hull of \(\vec{P}_j \). The \(j \) such that \(\vec{P}_j \cdot \vec{v}_i \to \max \) is always some point of a convex hull of \{\(P_j \}\}; namely, the lower hull of those points because the \(y \)-component of a vector \(\vec{v}_i \) in our case is negative.

Lower hull may be kept in the stack. New points are added to the right of the old ones (since \(x_j \) increases), so the stack may be recalculated in amortized \(O(1) \) (similar to the Andrew monotone chain algorithm).

Optimum \(j \) may be find via the binary search over the convex hull since \((\vec{P}_j, \vec{v}_i)\) increases up to some moment and then decreasing over all \(j \) belonging to the lower hull.

The complexity is \(O(n \log n) \).

Optimization 2: note that vector \(\vec{v}_i \) also moves to the right (its \(x \)-component increases).

It means that the pointer on the optimum point on lower hull also moves only to the right. Keep the optimum pointer \(\text{opt}[i] \) and try to move it to the right while it is profitable when moving from \(i \) to \(i+1 \).

The complexity is \(O(n) \).

3 Divide and Conquer optimization

Problem: You are given \(n \) integers \(x_1, x_2, \ldots, x_n \). Divide them into \(k \) consecutive groups such that \(\sum_{i=1}^{k} w_i \log w_i \to \min \) where \(w_i \) is the sum in the \(k \) group.

DP: \(DP[i][j] \) is the minimum penalty for dividing first \(j \) numbers into \(i \) groups. Then:

- \(DP[0][0] = 0; \)
- \(DP[i][j] = \min_{0 \leq z \leq j-1} (DP[i-1][z] + (S[j] - S[z]) \log(S[j] - S[z])) \) where \(S_j = x_1 + x_2 + \ldots + x_j \);

This is an \(O(n^2k) \) solution.

Optimization: notice the important property of optimal point monotonicity. Denote as \(\text{opt}_z[i][j] \) the value of \(z \) that is the optimum for the expression above.

Lemma: \(\text{opt}_z[i][j] \leq \text{opt}_z[i][j+1]. \)

Lemma proof: use induction and Karamata’s inequality.

Let’s calculate the \(i \)-th layer of DP using the following recursive procedure:
• **void calc(i, l, r)**

• Pre-requisite: \(\text{opt}[i][l-1] \) and \(\text{opt}[i][r+1] \) are already calculated (let \(\text{opt}[i][0] = 1 \) and \(\text{opt}[i][n+1] = n \));

• If \(l > r \), return;

• Let \(m = \lfloor (l + r)/2 \rfloor \), calculate \(\text{opt}[i][m] \) by iterating with \(z \) between \(\text{opt}[i][l] \) and \(\text{opt}[i][r] \);

• Make a recursive call of \(\text{calc}(i, l, m - 1) \) and \(\text{calc}(i, m + 1, r) \).

In total, each level of recursion works in \(O(n) \) and there are \(\log n \) recursion levels. Hence, everything works in \(O(nk \log n) \).

4 Knuth optimization

Problem: You are given values \(x_1, x_2, \ldots, x_n \). Organize them into a binary tree (without reordering) so that the sum of the values multiplied by their depths in the tree is as small as possible.

DP: \(D[l][r] \) is the cost of the best tree that may be built over the elements from \(l \)-th to \(r \)-th.

- \(D[l][l-1] = x_l \);
- \(D[l][r] = \min_{l \leq i \leq r} \left(D[l][i-1] + D[i+1][r] + (x_l + x_{l+1} + \ldots + x_r) \right) = \min_{l \leq i \leq r} (D[l][i-1] + D[i+1][r] + (S[r] - S[l-1])) \) where \(S[r] = x_1 + x_2 + \ldots + x_r \).

This is an \(O(n^3) \) DP.

Optimization: Consider \(\text{opti}[l][r] \) to be the optimum value of \(i \) for the formula above.

Lemma: \(\text{opti}[l][r-1] \leq \text{opti}[l][r] \leq \text{opti}[l+1][r] \).

Lemma proof: prove it by yourself. Prove the \(\text{opti}[l][r-1] \leq \text{opti}[l][r] \) by contradiction, consider the right path inside the optimum binary search tree, and find the contradiction.

Now, calculate DP in order of increasing \(r-l \). Iterate with \(i \) only in range \(\text{opti}[l][r-1], \text{opti}[l+1][r] \). Thus, the running time for a fixed \(r-l = d \) will be proportional to \(\text{opti}[d+1][2] - \text{opti}[d][1] + \text{opti}[d+2][3] - \text{opti}[d+1][2] + \ldots + \text{opti}[n][n-d+1] - \text{opti}[n-1][n-d] = \text{opti}[n][n-d+1] - \text{opti}[d][1] = O(n) \). So, the overall running time is \(O(n^2) \).

5 Lagrange optimization

Problem: IOI2016 Aliens [http://ioinformatics.org/locations/ioi16/contest/day2/aliens.pdf]

DP and optimization: Refer to the analysis of the contest [http://ioinformatics.org/locations/ioi16/contest/IOI2016_analysis.pdf]