Cartesian tree
Theory and applications

Gleb Evstropov
glebshp@yandex.ru

January 18, 2016

1 Some notations

• u, v, w — some nodes of the binary search tree;

• $parent(v)$ — the parent of some node v in the binary search tree. If v is the root then $parent(v) = \text{NIL}$;

• $left(v)$ — left child of some node v in the binary search tree. If the left subtree is empty, then $left(v) = \text{NIL}$;

• $right(v)$ — right child of some node v in the binary search tree. If the right subtree is empty, then $right(v) = \text{NIL}$;

• $key(v)$ — the value of a node v that affects the tree structure;

• $x(v)$ — another way to denote keys in Cartesian trees. Usually, $x(v) = key(v)$.

• $y(v)$ — some additional value associated with the node v and used to build the tree;

• $subtree(v)$ — the set of all nodes that lie inside the subtree of some node v (v is also included);

• $size(v)$ — the size of the subtree of some node v;

• $x_l(v)$ — the minimum key in the subtree of the node v, that is:

$$x_l(v) = \min_{u \in subtree(v)} key(u)$$

• Same as $x_l(v)$ we define $x_r(v)$ as the maximum key in the subtree of the node v:

$$x_r(v) = \max_{u \in subtree(v)} key(u)$$

• $depth(v)$ is the length of the path from root to v. $depth(root) = 0$.

• $height(v)$ is the difference between $\max(depth(u))$ and $depth(v)$, where $u \in subtree(v)$.
2 Key points and definitions

- Greedy algorithm of finding an increasing subsequence: take first element that is greater than current, "left ladder". The expected length of the result on a random permutation is $O(\log n)$.

- BST stands for binary search tree, that is a binary rooted tree with some keys associated with every node, and the following two conditions hold:
 \[
 \text{key}(u) < \text{key}(v), \forall u, v : u \in \text{subtree}(\text{left}(v))
 \]
 and
 \[
 \text{key}(u) > \text{key}(v), \forall u, v : u \in \text{subtree}(\text{right}(v))
 \]

- For any pair of nodes of any binary search tree v and u: $u \in \text{subtree}(v)$ if and only if $x_l(v) \leq \text{key}(u) \leq x_r(v)$

- For any tree and some keys stored in nodes of that tree we say that heap condition holds if for any v that is not the root:
 \[
 \text{key}(\text{parent}(v)) \geq \text{key}(v)
 \]

- Binary search tree of size n is balanced if it’s height is $O(\log n)$.

- Cartesian tree or treap is a balanced binary search tree, where each node is assigned some random values $y(v)$, which satisfy to the heap condition. Hereafter we will treat $y(v)$ as a random permutation.

- Cartesian tree is uniquely determined by a set of pairs (x_i, y_i), such that all x_i are pairwise distinct and all y_i are pairwise distinct.

- Node v is an ancestor of a node u if and only if for every $w \neq v$ such that $\min(\text{key}(v), \text{key}(u)) \leq \text{key}(w) \leq \max(\text{key}(v), \text{key}(u))$ it’s y is smaller than the y of v, i.e. $y(v) > y(w)$.

- Linear algorithm to build Cartesian tree having a sorted pairs using stack.

- The expected depth of an i-th node (in the order of left-right traversal) is
 \[
 \sum_{j=0}^{j<n} \frac{1}{|j-i|+1} \leq 2 \cdot \sum_{j=1}^{j \leq n} \frac{1}{j} = O(\log n)
 \]

- We can treat a Cartesian tree as an array, if we replace $x(v)$ with it’s relative position on the tree. The data structure is called Implicit-key Cartesian tree.

- Persistent Cartesian tree cannot use fixed random values $y(v)$, instead, two subtrees are merge with probability proportional to their sizes.