
Petrozavodsk SU Contest
Problem analysis

Artem Vasilev Pavel Krotkov

Brazilian ICPC Summer School, 2016

Artem Vasilev, Pavel Krotkov (ITMO University) Petrozavodsk SU Contest
Brazilian ICPC Summer School, 2016 1

/ 1

A. Gruz Cable
Problem statement

You are given a string with N (N ≤ 1500) Latin characters.

You can connect two equal characters as long as your connections do
not intersect. What is the maximum number of connections?

Artem Vasilev, Pavel Krotkov (ITMO University) Petrozavodsk SU Contest
Brazilian ICPC Summer School, 2016 2

/ 1

A. Gruz Cable
Problem solution

Standard Dynamic Programming problem: dp[l][r] is the maximum
number of connections only using wires from l to r .

Consider the wire at position l : it’s either connected to another wire,
or it’s not.

1 If it’s not connected to any other wire, dp[l][r] will be equal to
dp[l + 1][r].

2 In the case it’s connected to some other wire, bruteforce over all wires
of the same color as wire l from [l , r]. If we choose to connect wires l
and m, the answer would be 1 + dp[l + 1][m - 1] + dp[m + 1][r - l].

3 Choose the best answer and store this choice somewhere to restore the
wires afterwards.

Total runtime: O(N3) with a small constant; will possibly require
non-asymptotic optimizations to fit in TL.

Artem Vasilev, Pavel Krotkov (ITMO University) Petrozavodsk SU Contest
Brazilian ICPC Summer School, 2016 3

/ 1

B. Genealogy
Problem statement

You are given a rooted tree with N (N ≤ 100000) vertices and some
queries of total size M (M ≤ 3000000).

A query is a group of vertices, and we are required to calculate the
number of vertices which are ancestors of at least one vertex in given
group.

Artem Vasilev, Pavel Krotkov (ITMO University) Petrozavodsk SU Contest
Brazilian ICPC Summer School, 2016 4

/ 1

B. Genealogy
Solution

Run the DFS on this tree. Write all the vertices from the query in the
order they were first visited during DFS. Also save the depth of each
vertex depth(i).

The first vertex v1 in our query contributes depth(v1) to the answer.
For i > 1, vertex i adds depth(vi)− depth(LCA(vi , vi−1)).

We can find all LCAs in O(M logN) time with any online algorithm
or in O((N + M)α(N) with Tarjan’s offline algorithm using
Union-Find data structure.

Total runtime: O(M logN)

Artem Vasilev, Pavel Krotkov (ITMO University) Petrozavodsk SU Contest
Brazilian ICPC Summer School, 2016 5

/ 1

C. LCA Online
Problem statement

Once again, a rooted tree with N (N ≤ 100000) vertices and M
(M ≤ 100000) queries.

Queries can change the parent of any vertex and ask for LCA of two
vertices.

Artem Vasilev, Pavel Krotkov (ITMO University) Petrozavodsk SU Contest
Brazilian ICPC Summer School, 2016 6

/ 1

C. LCA Online
Solution

Construct the Euler tour of the input tree. For this problem I’ll use
the version of Euler tour containing directed edges. All the subtrees in
this tour will be a contiguous array. We will also store depths along
with vertices themselves.

For this problem we will store the Euler tour in a implicit treap.
Changing the parent of a vertex can be implemented as follows:

1 Cutting the subarray of Euler tour correspon
2 Adding a constant to all depths to make up for a depth change
3 Inserting the subarray back

For the LCA query, take the subarray between the two ingoing edges
for u and v , and find the vertex with minimum depth in it.

All the queries are made online, each one takes O(logN) time, so the
total runtime is O(M logN).

Artem Vasilev, Pavel Krotkov (ITMO University) Petrozavodsk SU Contest
Brazilian ICPC Summer School, 2016 7

/ 1

D. YAPT
Problem statement

You are given a long string S and some more queries: find k-th
non-palindrome substring starting from position i .

Artem Vasilev, Pavel Krotkov (ITMO University) Petrozavodsk SU Contest
Brazilian ICPC Summer School, 2016 8

/ 1

D. YAPT
Solution

First, for all positions find the largest palindrome with the center in
this position for both odd and even palindromes. This can be
accomplished with a modification of Z-function algorithm called
Manacher’s algorithm.
The neat trick is to replace string S with string S ′ which is string S
interspersed with some new symbol $. After that, we don’t need a
separate code for even palindromes, only for odd.
We’ll solve all the queries in order of decreasing i . We will also keep
track of all centers of palindromes to the right of i whose left border
is to the left of i .
Now the problem of finding k’th non-palindrome prefix of S [i ..N] is
the same as finding k ’th number in the set which is not a valid
center. This can be done with any segment tree-like data structure in
O(logN) or O(log2N) time.
Every palindrome center get added and removed only once, so the
total runtime is O((N + M) logN).

Artem Vasilev, Pavel Krotkov (ITMO University) Petrozavodsk SU Contest
Brazilian ICPC Summer School, 2016 9

/ 1

E. Paths
Problem statement

A tree of n vertices

Every edge has a guard with two parameters: rank bi and greediness
ci

For every vertice of the tree a person walks from the root to this
vertice

Person pays every guard on his path ci in case he haven’t bribe
anyone with lesser rank so far

Otherwise, person pays median value of the bribes he gave to guards
with lesser rank

Calculate total amount of the bribes for every person

Artem Vasilev, Pavel Krotkov (ITMO University) Petrozavodsk SU Contest
Brazilian ICPC Summer School, 2016 10

/ 1

E. Paths
Some observations

On every edge all persons coming through it pay same amount of
money (we’ll call it Ci)

If we calculate this amount for every edge we can easily solve the
problem

Ci depends only on the amounts paid on previous edges on the walk
from root

Artem Vasilev, Pavel Krotkov (ITMO University) Petrozavodsk SU Contest
Brazilian ICPC Summer School, 2016 11

/ 1

E. Paths
General idea

We’ll do a DFS search in our tree starting from the root

During DFS we’ll store some data about payments during the walk
from root to current vertice

We’ll derive Ci for every edge based on this data during DFS

Artem Vasilev, Pavel Krotkov (ITMO University) Petrozavodsk SU Contest
Brazilian ICPC Summer School, 2016 12

/ 1

E. Paths
Calculating Ci (1)

Let’s consider all the data we have when standing in some vertice

We have a set of guards we already paid to

For every guard we have his rank bi and the amount of money we
paid to him Ci

Greediness of passed guards doesn’t matter anymore

We can think of this data as of set of points on a plane

b

C

Artem Vasilev, Pavel Krotkov (ITMO University) Petrozavodsk SU Contest
Brazilian ICPC Summer School, 2016 13

/ 1

E. Paths
Calculating Ci (2)

We met a guard with rank bi
To decide a size of his bribe we need to consider only guards with
lower rank

b

C

bi

Artem Vasilev, Pavel Krotkov (ITMO University) Petrozavodsk SU Contest
Brazilian ICPC Summer School, 2016 14

/ 1

E. Paths
Calculating Ci (3)

There are t considerable points
t
2 of them lie to the left from Ci

b

C

bi

Cj

Artem Vasilev, Pavel Krotkov (ITMO University) Petrozavodsk SU Contest
Brazilian ICPC Summer School, 2016 15

/ 1

E. Paths
Data structure

Segment tree

Every leaf corresponds to some possible size of bribe

There can be ≈ 109 leaves, we’ll discuss it later

Every vertex of segment tree stores all points with bribe size from it’s
range

Points are stored in Cartesian tree (or any other BST) by rank

Artem Vasilev, Pavel Krotkov (ITMO University) Petrozavodsk SU Contest
Brazilian ICPC Summer School, 2016 16

/ 1

E. Paths
Calculating Ci (4)

We traverse down the segmnet tree to find Ci

In every vertex we calculate amount of points with sufficient rank
using BST operations

Based on that information we decide whether we are going to the left
child of segment vertex or to the right one

Total complexity: O(n × log n × logmaxC)

Artem Vasilev, Pavel Krotkov (ITMO University) Petrozavodsk SU Contest
Brazilian ICPC Summer School, 2016 17

/ 1

E. Paths
Segment tree modification

There will be no more then n non-empty leaves in our segment tree

Let’s create a leaf and all it’s missing ancestors only when we need to
add a point to it

This way tree height is logmaxC , but total amount of vertices is
n × logmaxC

Artem Vasilev, Pavel Krotkov (ITMO University) Petrozavodsk SU Contest
Brazilian ICPC Summer School, 2016 18

/ 1

F. Scarf
Problem statement

We have a scarf which consists from 2X segments

We fold it m times following some rules

Need to find position of some segment after all the folding

Artem Vasilev, Pavel Krotkov (ITMO University) Petrozavodsk SU Contest
Brazilian ICPC Summer School, 2016 19

/ 1

F. Scarf
Problem solution

We need to simulate folding process

4 variables are enough: length, height, segPosition, segHeight

On each iteration height ← height × 2

On each iteration length← length
2

We have 3 different cases on each iteration of folding

Artem Vasilev, Pavel Krotkov (ITMO University) Petrozavodsk SU Contest
Brazilian ICPC Summer School, 2016 20

/ 1

F. Scarf
First case

segPosition ≤ length
4

segPosition← length
4 − segPosition

segHeight ← height × 2− segHeight
length

4 < segPosition ≤ 3× length
4

segPosition← segPosition − length
4

segPosition > 3× length
4

segPosition← 3× length
2 − segPosition

segHeight ← height × 2− segHeight

Artem Vasilev, Pavel Krotkov (ITMO University) Petrozavodsk SU Contest
Brazilian ICPC Summer School, 2016 21

/ 1

F. Scarf
Second case

segPosition ≤ length
4

segHeight ← height × 2− segHeight

Artem Vasilev, Pavel Krotkov (ITMO University) Petrozavodsk SU Contest
Brazilian ICPC Summer School, 2016 22

/ 1

G. Square
Problem statement

We have square with reflectable walls

Ray of light should get from the bottom-left corner to the top-right
corner

It should do it without hitting other corners

It should be reflected K times

Artem Vasilev, Pavel Krotkov (ITMO University) Petrozavodsk SU Contest
Brazilian ICPC Summer School, 2016 23

/ 1

G. Square
Solution idea

Let’s reflect our square instead of ray

This way we’ll get field consisting from n ×m squares

Ray should go between corners without hitting any internal knots

Artem Vasilev, Pavel Krotkov (ITMO University) Petrozavodsk SU Contest
Brazilian ICPC Summer School, 2016 24

/ 1

G. Square
Constraints on n and m

n + m = K + 2 – so that we had exactly K reflections

n + m = 0(mod 2) – so that we finished in the top-right corner

n and m are coprime – so that we won’t hit any internal knots

Artem Vasilev, Pavel Krotkov (ITMO University) Petrozavodsk SU Contest
Brazilian ICPC Summer School, 2016 25

/ 1

G. Square
Solution

answer =

{
0, if K = 1(mod 2)

φ(K + 2) otherwise
(1)

Artem Vasilev, Pavel Krotkov (ITMO University) Petrozavodsk SU Contest
Brazilian ICPC Summer School, 2016 26

/ 1

H. Strings
Problem statement

Two strings A and B, |A|, |B| ≤ 10 000

Find all substrings of A that occur at B exactly K times

Artem Vasilev, Pavel Krotkov (ITMO University) Petrozavodsk SU Contest
Brazilian ICPC Summer School, 2016 27

/ 1

H. Strings
Solution idea

Let’s divide our problem to |A| simpler problems

i-th problem will be Find all substrings Ai ..k , si ≤ k ≤ |A| that occur
in B exactly K times

Ai ..si−1 is the longest substring which starts at Ai and occured in A
before Ai

Artem Vasilev, Pavel Krotkov (ITMO University) Petrozavodsk SU Contest
Brazilian ICPC Summer School, 2016 28

/ 1

H. Strings
Calculating answer

Consider the string C = Ai ..|A| + $ + B and Z-function for this string

Substring Ai ..j occurs in B exactly

Di ,j =

|C |∑
k=|C |−|B|+1

{
1, if zk ≥ j − i + 1

0 otherwise
(2)

times

We can calculate Di ,j for all values of j and fixated i in linear time

Artem Vasilev, Pavel Krotkov (ITMO University) Petrozavodsk SU Contest
Brazilian ICPC Summer School, 2016 29

/ 1

H. Strings
Calculating si

Now we only need to find si values

We can just update si with i + zi on every iteration of our solution

Artem Vasilev, Pavel Krotkov (ITMO University) Petrozavodsk SU Contest
Brazilian ICPC Summer School, 2016 30

/ 1

H. Strings
Complexity

Total complexity: O(n2)

Artem Vasilev, Pavel Krotkov (ITMO University) Petrozavodsk SU Contest
Brazilian ICPC Summer School, 2016 31

/ 1

I. Triangle
Problem statement

You are given a regular polygon with vertices colored in two colors.

Find a number of isosceles (two sides are equal) triangles, where all
three vertices are of the same color.

Artem Vasilev, Pavel Krotkov (ITMO University) Petrozavodsk SU Contest
Brazilian ICPC Summer School, 2016 32

/ 1

I. Triangle
Problem solution

Let’s fix the color of the triangle and replace all the occurences of
that color with 1 and all the other characters with 0. Call that new
array ai .

Consider position i : how many triangles there are with i as it’s top
vertex? The answer is

∑
j=1

N
2 ai+jai−j . Notice that the sum of indices

is always equal to 2i mod N

Artem Vasilev, Pavel Krotkov (ITMO University) Petrozavodsk SU Contest
Brazilian ICPC Summer School, 2016 33

/ 1

I. Triangle
Problem solution

Let’s consider another array bi =
i∑

j=0
ajai−j . Having this array allows

us to get answers for all vertices. How do we get it? Fast Fourier
Transform.

One last detail: we counted equilateral triagles 3 times instead of one.
This is only possible if n = 3k , and it’s sufficient to check all the
triangles (i , i + k, i + 2k) and subtract 2 each time we encounter a
one-colored triangle.

FFT takes O(N logN) time and all the other processing can be done
in linear time.

Artem Vasilev, Pavel Krotkov (ITMO University) Petrozavodsk SU Contest
Brazilian ICPC Summer School, 2016 34

/ 1

