
Waterloo Trainings Selection 1
Problem analysis

Artem Vasilev Pavel Krotkov

Brazilian ICPC Summer School, 2016

Artem Vasilev, Pavel Krotkov (ITMO University) Waterloo Trainings Selection 1
Brazilian ICPC Summer School, 2016 1

/ 1

A. Tic Tac Toe
Problem statement

Tic Tac Toe game on the n × n board

Finishes when there are m similar next to each other

Might be on a row, column or diagonal

n ≤ 1000

Determine whether game is finished

Artem Vasilev, Pavel Krotkov (ITMO University) Waterloo Trainings Selection 1
Brazilian ICPC Summer School, 2016 2

/ 1

A. Tic Tac Toe
Problem solution

Let’s develop solution for rows

Other cases are similar

lefti ,j – amount of cells equal to cell [i , j] to the left from [i , j]

lefti ,j =

0, if [i , j] is empty

1, if [i , j] differs from [i , j − 1]

lefti ,j−1 + 1, if [i , j] is equal to [i , j − 1]

(1)

Game is finished, if ∃i , j : lefti ,j = m

All the error situations also can be found out

Artem Vasilev, Pavel Krotkov (ITMO University) Waterloo Trainings Selection 1
Brazilian ICPC Summer School, 2016 3

/ 1

B. Nice Prefixes
Problem statement

Count the number of strings with nice prefixes of length L over an
alphabet of K symbols.

A prefix of a string is nice if | count(x)− count(y) |≤ 2 for all
characters x and y , where count(x) is the number of occurences of x
in the given string.

Artem Vasilev, Pavel Krotkov (ITMO University) Waterloo Trainings Selection 1
Brazilian ICPC Summer School, 2016 4

/ 1

B. Nice Prefixes
Slow solution

dp[n][x][y][z] is the number of strings of length n which have x
characters occuring t times, y characters occuring t + 1 times and z
characters occuring t + 2 times, where t is the minimal number of
times any character occurs.

x + y + z = K

xt + y(t + 1) + z(t + 2) = N ∈ [tK , (t + 2)K). From this we can
derive that t ∈ [bNK c − 2, bNK c].
Use matrix exponentiation to get dp[N] in O(S3 logN) time.(K+2

2

)
≤ 1326 states, too large to fit in TL.

Artem Vasilev, Pavel Krotkov (ITMO University) Waterloo Trainings Selection 1
Brazilian ICPC Summer School, 2016 5

/ 1

B. Nice Prefixes
Optimizing

Consider a moment when the minimal amount of times any character
occurs (x in definitions from the last slide) increased. Notice that for
this string z = 0. Number of states with z = 0 is K + 1. We’ll call
such a state interesting.

Number of interesting states is small enough so we can use matrix
exponentiation to calculate the number of strings ending with a
particular interesting state and visiting t interesting states inbetween
for all t ∈ [bNK c − 2, bNK c].
Bruteforce the last state of our string (O(K 2)) and the last
interesting state (O(K)). From these states we can derive t (the
minimum of all count(x)). Sum over all possible pairs of these states
will give the answer.

Artem Vasilev, Pavel Krotkov (ITMO University) Waterloo Trainings Selection 1
Brazilian ICPC Summer School, 2016 6

/ 1

B. Nice Prefixes
Full algorithm

1 Find the number of ways from all interesting states to all states.
2 Find At , where A is the transition matrix between interesting states, for

all t ∈ [bNK c − 2, bNK c].
3 Iterate over all possible pairs (last state, last interesting state), take the

precomputed results from steps 1 and 2; add it to the answer.

Total runtime: O(K 3 logN)

Artem Vasilev, Pavel Krotkov (ITMO University) Waterloo Trainings Selection 1
Brazilian ICPC Summer School, 2016 7

/ 1

C. Slalom
Problem statement

Need to pass N pairs of gates

Gates have different Y -coordinates

Gates are shifted over each other along X -axis

Vertical speed is constant for every pair of ski

Horizontal speed ∈ [−vh; vh]

Artem Vasilev, Pavel Krotkov (ITMO University) Waterloo Trainings Selection 1
Brazilian ICPC Summer School, 2016 8

/ 1

C. Slalom
Solution idea

If we can pass all gates at speed V we can pass all gates at any speed
v < V

If we can’t pass all gates at speed V we can’t pass all gates at any
speed v > V

We can order all pairs of ski by speed and do binary search

All we need to do is checking whether we can pass all gates at
particular speed

Artem Vasilev, Pavel Krotkov (ITMO University) Waterloo Trainings Selection 1
Brazilian ICPC Summer School, 2016 9

/ 1

C. Slalom
Checking of particular speed

We start at point (0, 0), our speed is s

At the first gate y = y1, x ∈ [− y1
s × vh,

y1
s × vh]

Since we need to pass the gate
x ∈ [max(x1,− y1

s × vh),min(x1 + W , y1s × vh)]

We can store current range of possible x coordinate and update it
gate-by-gate

If at some point we can’t pass the gate, this speed doesn’t fit

Artem Vasilev, Pavel Krotkov (ITMO University) Waterloo Trainings Selection 1
Brazilian ICPC Summer School, 2016 10

/ 1

D. Celebrity Split
Problem statement

n items, each worth wi

n ≤ 24

106 ≤ wi ≤ 4× 107

We need to find two subsets with equal worth and maximize this
worth

Artem Vasilev, Pavel Krotkov (ITMO University) Waterloo Trainings Selection 1
Brazilian ICPC Summer School, 2016 11

/ 1

D. Celebrity Split
Solution idea

Let’s divide all items on two halves (maximum size of each – 12 items)

For every half we’ll calculate all possible partitions onto three parts
(312 variants)

For every partition we need to know difference between Jack’s and
Jill’s parts and total worth of sold property

For every partition of the first half we’ll find partition of the second
half with same difference and minimum worth of sold property

One of the combinations is the answer

Artem Vasilev, Pavel Krotkov (ITMO University) Waterloo Trainings Selection 1
Brazilian ICPC Summer School, 2016 12

/ 1

E. Knight’s Trip
Problem statement

Knight can go for two cells along one of the axis and for one cell
along another axis

We need to find shortest path from [0, 0] to [x , y]

Artem Vasilev, Pavel Krotkov (ITMO University) Waterloo Trainings Selection 1
Brazilian ICPC Summer School, 2016 13

/ 1

E. Knight’s Trip
Obvious case

What are the constraints on x and y for us to know exact shortest
path?

T = min(|x |, |y |)− ||x | − |y || = 0(mod 3)

In this case we are doing T
3 pairs of corresponding moves (like

(2, 1) + (1, 2)) and then ||x | − |y || steps to create the difference
between |x | and |y |

Artem Vasilev, Pavel Krotkov (ITMO University) Waterloo Trainings Selection 1
Brazilian ICPC Summer School, 2016 14

/ 1

E. Knight’s Trip
Not obvious case

What if it’s not the case?

Precalculate space around [0, 0] for 10 cells in each direction

Calculate distance from all precalculated cells satisfying the condition
to [x , y]

Answer is one of the calculated distances

Artem Vasilev, Pavel Krotkov (ITMO University) Waterloo Trainings Selection 1
Brazilian ICPC Summer School, 2016 15

/ 1

F. Paintball
Problem statement

Square paintball field 1000× 1000

n circles on in we can’t go in (n ≤ 1000)

Cross the field from west to east

Artem Vasilev, Pavel Krotkov (ITMO University) Waterloo Trainings Selection 1
Brazilian ICPC Summer School, 2016 16

/ 1

F. Paintball
Solution idea

We go along nothern border

If we meet a circle, we go along it’s border counter-clockwise

Going that way until we meet nothern/southern border or another
circle

We can precalculate all intersection points of all pairs of circles

Artem Vasilev, Pavel Krotkov (ITMO University) Waterloo Trainings Selection 1
Brazilian ICPC Summer School, 2016 17

/ 1

G. Fire!
Problem statement

Maze on a grid

Some cells are on fire

Fire spreads with 1 cell
minute speed

We need to find an exit

Artem Vasilev, Pavel Krotkov (ITMO University) Waterloo Trainings Selection 1
Brazilian ICPC Summer School, 2016 18

/ 1

G. Fire!
Solution idea

Let’s say we have a 3-D maze

[t, x , y] is [x , y] cell after t minutes

Now our fire doesn’t spread

Every move we go into next time level

Let’s do BFS and find an exit

Artem Vasilev, Pavel Krotkov (ITMO University) Waterloo Trainings Selection 1
Brazilian ICPC Summer School, 2016 19

/ 1

G. Fire!
Implementation details

Maze size: 1000× 1000× T

A lot of time, a lot of space

But actually, we don’t need to store all the information

We need to store nearest fire location for every cell at the beginning
(another BFS) to check whether [t, x , y] is on fire

Total amount of cells we are interested is not bigger then
1000× 1000, because we don’t need to go into the same cell twice

Artem Vasilev, Pavel Krotkov (ITMO University) Waterloo Trainings Selection 1
Brazilian ICPC Summer School, 2016 20

/ 1

H. Alaska
Problem statement

Automobile can ride 200 miles without charging

We need to ride 1422 miles

There are some charging stations along the way

We need to check whether we can do it

Artem Vasilev, Pavel Krotkov (ITMO University) Waterloo Trainings Selection 1
Brazilian ICPC Summer School, 2016 21

/ 1

H. Alaska
Problem solution

The easiest problem of the contest

Order all charging stations

Check if all distances between consequent stations are less then or
equal to 200 miles

Artem Vasilev, Pavel Krotkov (ITMO University) Waterloo Trainings Selection 1
Brazilian ICPC Summer School, 2016 22

/ 1

I. Driving Range
Problem statement

We have a network of cities and roads

Automobile can ride driving range (x) without charging

Automobile should be able to get from any city to any other city
through any amount of cities

x should be minimized

Artem Vasilev, Pavel Krotkov (ITMO University) Waterloo Trainings Selection 1
Brazilian ICPC Summer School, 2016 23

/ 1

I. Driving Range
Problem solution

If the driving range is x , we have only roads which are not longer,
then x

If the driving range is satisfying, then any range that is longer is also
satisfying

If the driving range is not satisfying, then any range that is sharter is
also not satisfying

We can do binary search to find optimal driving range

Artem Vasilev, Pavel Krotkov (ITMO University) Waterloo Trainings Selection 1
Brazilian ICPC Summer School, 2016 24

/ 1

I. Driving Range
Implementation details

When checking driving range x we do BFS on our graph to ensure it’s
connected

During BFS we use only roads no longer then x

Artem Vasilev, Pavel Krotkov (ITMO University) Waterloo Trainings Selection 1
Brazilian ICPC Summer School, 2016 25

/ 1

J. Buzzwords
Problem statement

String S is given

|S | ≤ 1000

We need to find the most popular x-letter combination for every x

Artem Vasilev, Pavel Krotkov (ITMO University) Waterloo Trainings Selection 1
Brazilian ICPC Summer School, 2016 26

/ 1

J. Buzzwords
Solutions overview

Several different solutions

Suffix structures (for example suffix tree)

Polynomial hashing – easiest for implementation

Artem Vasilev, Pavel Krotkov (ITMO University) Waterloo Trainings Selection 1
Brazilian ICPC Summer School, 2016 27

/ 1

J. Buzzwords
Polynomial hashing: task overview

We need to create function f : String → Integer

This function should give distributed values on different strings

We should be able to calculate this function for all substrings of S in
O(|S |2) time

Artem Vasilev, Pavel Krotkov (ITMO University) Waterloo Trainings Selection 1
Brazilian ICPC Summer School, 2016 28

/ 1

J. Buzzwords
Polynomial hashing: method idea

The following function is considered good at most cases

f (S) = (
∑|S|−1

i=0 Si × P i) mod M

P – some prime number

M – some modulo

Artem Vasilev, Pavel Krotkov (ITMO University) Waterloo Trainings Selection 1
Brazilian ICPC Summer School, 2016 29

/ 1

J. Buzzwords
Polynomial hashing: method features

Probability of collision is considerable for
√
M strings

A lot of collisions on Thue-Morse strings when M = 2x

Artem Vasilev, Pavel Krotkov (ITMO University) Waterloo Trainings Selection 1
Brazilian ICPC Summer School, 2016 30

/ 1

J. Buzzwords
Polynomial hashing: calculating substrings hashes

f (si ..j) = f (si ..j−1)× P + sj

We can calculate hashes of all substrings starting at si for O(|S |)

Artem Vasilev, Pavel Krotkov (ITMO University) Waterloo Trainings Selection 1
Brazilian ICPC Summer School, 2016 31

/ 1

J. Buzzwords
Problem solution

We calculate hashes of all substrings with big enough modulo

For every possible substring length we store a map from hash to
amount of occurences

Can easily find the most popular string

Artem Vasilev, Pavel Krotkov (ITMO University) Waterloo Trainings Selection 1
Brazilian ICPC Summer School, 2016 32

/ 1

K. Ferry Loading
Problem statement

We have n cars (n ≤ 100)

Each car has it’s own weight (real number, ≤ 100)

We need to divide them onto two subsets of almost equal total weight

Weights are considered almost equal if their difference is less then 2%

Artem Vasilev, Pavel Krotkov (ITMO University) Waterloo Trainings Selection 1
Brazilian ICPC Summer School, 2016 33

/ 1

K. Ferry Loading
Simplifying the problem

Let’s multiply all car weights on some number X

We need to achieve the situation, when sum of the fraction parts is
less then 1% of total car weight

It can be achieved if sum of the integer parts is around 10 000

Now we can throw out all fraction parts

Artem Vasilev, Pavel Krotkov (ITMO University) Waterloo Trainings Selection 1
Brazilian ICPC Summer School, 2016 34

/ 1

K. Ferry Loading
Problem solution

Now our problem became standard knapsack problem

Knapsack problem can be solved with dynamic programming

Artem Vasilev, Pavel Krotkov (ITMO University) Waterloo Trainings Selection 1
Brazilian ICPC Summer School, 2016 35

/ 1

