
Task: FIL

Film Editor

Maratona de Programação, Day 3. Available memory: 256 MB. 28.01.2015

Limonia is a new dynamically developing city. Andrew Citrus (the Mayor of Limonia) decided that it should be
promoted in order to increase the number of tourists visiting it in the future. For this purpose, he hired a film
crew whose task was to make a film depicting the most interesting sides of Limonia. The filmmakers carried out
their duty perfectly and prepared a film consisting of n shots depicting many interesting aspects of Limonia, e.g.
the picturesque pen of Puffnootsy the wombat or the well-developed chain of pizzerias. However, it displeased
Citrus that not the entire film had a dynamic character compatible with the pace of development of Limonia.
Some of the shots were dynamic indeed, but more static shots also appeared, for example conversations with
very important persons.

As city promotion films do not usually have strictly imposed chronology, the Major decided to edit the
shots on his own. He cares about maximising the length of the longest dynamic scene. He would not like to
introduce too much chaos though, so he decided to cut the film reel using at most k cuts and edit the resulting
fragments in order of his choice (of course he cannot reverse a fragment back-to-front). Help the Major and
tell him how long dynamic scene he can edit!

A scene is a sequence of consecutive shots and its length is the number of shots it consists of. A scene is
called dynamic if it consists of dynamic shots only.

Input

In the first line of the input there is one integer t (1 ≤ t ≤ 10) specifying the number of test cases. In every of
the following t lines a description of one test case can be found. It consists of an integer k (0 ≤ k ≤ 100 000)
specifying the maximum number of cuts which may be performed by Andrew Citrus and a n-letter word
(1 ≤ n ≤ 100 000) consisting of letters D and S: the i-th letter stands for the type of the i-th shot in the film
(the letter D stands for a dynamic shot, and the letter S stands for a static shot).

Output

The output should consist of t lines containing answers to the consecutive test cases from the input. The
answer to a test case is an integer meaning the length of the longest dynamic scene which can be edited by
the Major.

Example

For the input data:

2

2 DDSDSSD

3 DSDSDSD

the correct result is:

4

3

Explanation of the example: If we cut the first film using two cuts to three pieces of lengths respectively
3, 1 and 3 shots, and next we edit them in the reverse order, then all 4 dynamic shots will be placed in one
dynamic scene.

v. 1.4 1/1 Film Editor



Task: BOH

The Hero

Maratona de Programação, Day 3. Available memory: 256 MB. 28.01.2015

A new computer game has just been released and presently is available in Byteotian supermarkets, In the
game we play the role of a brave hero Bithor, whose task is to destroy the n monsters living in the Byteburg
dungeons. For simplicity, the monsters will be numbered from 1 to n.

During the encounter with the monster numbered i Bithor suffers injuries that cost him di life points. The
monster’s task is to defend a chest containing the healing potion, capable of restoring ai of Bithor’s life points,
providing he wins an engagement with the monster.

Bithor defeats monsters without difficulty, however, he absolutely cannot allow the number of his life points
to drop to zero (or below) at any time. Is it possible that Bithor fights enemies in such an order, that defeats
all of them?

Input

The first line contains two integers n and z (1 ≤ n, z ≤ 100 000), specifying the number of monsters and the
initial number of Bithor’s life points. The next n lines contain descriptions of monsters: i-th of these lines
contains two integers di and ai (0 ≤ di, ai ≤ 100 000), specifying the damage inflicted by a monster number i

and the power of the healing potion which could be consumed after defeating the monster.

Output

The first line of output should contain one word TAK (Polish for yes) or NIE (Polish for no), depending on
whether Bithor is able to defeat all the monsters. In case defeating all the monsters is possible, a second
line should be produced containing a string of n pairwise distinct integers ranging from 1 to n, separated by
single spaces. This string should describe an exemplary fight sequence, and its consecutive elements should
correspond to the numbers of sequentially conquered monsters. In case there is more than one correct answer,
your program should output any of them.

Example

For the input data:

3 5

3 1

4 8

8 3

the correct result is:

TAK

2 3 1

v. 1.1 1/1 The Hero



Task: KUG

The Juggler

Maratona de Programação, Day 3. Available memory: 256 MB. 28.01.2015

Byteson earns a living as a juggler at a fair in Byteland. He invites passers-by to a specific game. There is
a row of n cups numbered 1, 2, . . . , n on the table. Rubber marbles are are hidden under some of them. In
case a player accurately guesses under which cups the marbles are hidden, he win a big teddy bear. Byteson
is offering hints to players for a fee. For cij bytecents Byteson is willing to reveal the parity of the number of
marbles hidden under the cups numbered i, i + 1, . . . , j.

Byteasar visited the fair with Byteatrix — prettiest girl in Byteland. He is determined to to win a teddy
bear for her. Definitely he hates to be embarrassed and he is certain that guesswork is not the right way to
go. He intends to pay for hints until all gathered information would enable him to determine, with certainty,
which cups have marbles underneath.

Knowing the prices of all the possible hints, he is wondering now, what would be the maximum cost. To
be precise, he would like to know the least such number k, that there is a strategy of asking questions such
that, regardless of the answers Byteson is providing, allows to determine the marbles positioning for at most
k bytecents.

Input

The first line of the input contains one integer n (1 ≤ n ≤ 2000), specifying the number of cups. This is followed
by a description of the cost of hints about the individual intervals. The (i+1)-th line of input contains n+1− i

integers (for 1 ≤ i ≤ n), specifying the costs of individual hints.
The hints cost cij (1 ≤ i ≤ j ≤ n, 1 ≤ cij ≤ 109) concerning the range from i-th to j-th cup (inclusive),

appears at the input as (j + 1 − i)-th number of the (i + 1)-th line.

Output

Your program should output one integer — the maximum cost in bytecents of determining the positioning of
the marbles for optimal stategy of asking questions.

Example

For the input data:

5

1 2 3 4 5

4 3 2 1

3 4 5

2 1

5

the correct result is:

7

v. 2.02 1/1 The Juggler



Task: PAR

The Car Park

Maratona de Programação, Day 3. Available memory: 256 MB. 28.01.2015

Have you ever wondered what being a car park employee is really all about? On the surface it does not look
like a difficult job: customers leave their cars that need to be parked. Simple? It might seem so, but the reality
is more complicated. The main problem of our car park guy is his boss.

One day the boss told his poor employee to move all the cars in the car park according to his whim. Our
guy, looking at the piece of paper from his boss, and at a piece of paper with the current car arrangement, is
wondering whether it is possible at all. Help him!

Let us represent the car park as a rectangle (positioned on a plane) with the height of w. For convenience,
let us set a rectangular coordinate system with axes parallel to the sides of the rectangle. The origin of the
coordinate system is located in the lower left corner of the rectangle. The car park is wide enough, so it is
convenient to assume, that the right side of the rectangle is infinitely far away.

For simplicity, we also consider cars to be of a rectangular shape with sides parallel to the coordinate axes.
However, cars tend to be of various sizes, and therefore the corresponding rectangles may have different sizes
as well. The arrangement of the cars in the car park is correct if all the cars are located within the the car
park and no part of the car park is occupied by two vehicles at the same time. We allow, however, that the
edges of the rectangles, representing the cars, to overlap.

Our friend is an experienced car park employee, his seniority undisputed, so cars can be moved by him
freely in any direction (formally speaking: car park worker can always move any car by any vector), providing
cars are not bumped together. They, however, can not be rotated.

Your task is to determine whether you can rearrange the cars from their current positions to the positions
specified by the boss, without damaging any vehicle.

Input

The first line of input contains the number of test cases t (1 ≤ t ≤ 20), which are described in the rest of
the input. Description of each test case starts with a line containing two integers n and w (1 ≤ n ≤ 50 000,
1 ≤ w ≤ 109) specifying the number of cars in the car park and the height of the rectangle representing the
car park.

The next n lines contain a description of the initial arrangement of the vehicles: i-th of these lines contains
four integers x1, y1, x2 and y2 (0 ≤ x1, x2 ≤ 109, 0 ≤ y1, y2 ≤ w), which describe a rectangle with opposite
vertices located at the points (x1, y1) and (x2, y2), corresponding to i-th car at the car park. All rectangle
areas are described by a positive number.

The next n lines contain a description of the target vehicle arrangement, given in an analogous format. Cars
in both descriptions are given in the same order (i-th car from the initial arrangement description corresponds
to the i-th car from the targeted car arrangement). The same car can be described in the target arrangement
by other vertices, than the ones from the initial arrangement. You may assume that both descriptions are
correct.

Output

The output should produce t rows: i-th row should contain one word TAK (Polish for yes) or NO (Polish for no)
depending on whether for the i-th test case it is possible to rearrange the cars in accordance to the requirements
of the boss, or not.

v. 1.1 1/2 The Car Park



Example

For the input data:

2

3 3

0 0 2 2

2 1 4 3

4 0 6 1

0 0 2 2

2 1 4 3

0 2 2 3

3 3

0 0 2 2

2 1 4 3

4 0 6 1

2 1 4 3

0 0 2 2

4 0 6 1

the correct result is:

TAK

NIE

1

2

3

1

2

3

Explanation of the example: The figure shows the first test case from the example. The left part shows
the initial setting of the cars, and the right part shows a destination arrangement. In order to position car
number 3 at the correct location, car number 2 should be moved down or to the right. In the second test case
we would have to swap cars number 1 and 2, which is not possible.

v. 1.1 2/2 The Car Park



Task: KOR

Woodworms

Maratona de Programação, Day 3. Available memory: 256 MB. 28.01.2015

Two woodworms decided to eat an old wooden fence. The fence consists of n planks, which are not necessarily
the same height. Woodworms heard from friendly termites, that nothing makes a meal more pleasant, than a
little healthy competition. Therefore they decided to play a game and eat fence planks in turns. A woodworm,
taking its turn, can eat one of the planks from the end of the fence or both of them at once. Knowing that,
each woodworm chooses the planks so that the total of their heights, eaten during the whole game, to be as
large as possible, calculate how much wood would be eaten by each of them.

Input

The first line of input contains an integer n (1 ≤ n ≤ 1 000 000), specifying the number of planks in the fence.
The second line contains a sequence of n integers h1, h2, . . . , hn (1 ≤ hi ≤ 1 000 000 000), describing the lengths
of consecutive fence planks.

Output

The first and only line of output should contain two integers. The first one denotes the total fence planks
heights, which are the nourishment of the woodworm beginning the game, and the second, how much wood
would fall in the share of its opponent.

Example

For the input data:

4

5 2 9 3

the correct result is:

14 5

Explanation of the example: In its first move, the first woodworm can choose a plank of height 5,
of height 3, or both at once. The optimal move is eating a plank of height 5. The opponent then eats planks
of heights 2 and 3.

v. 1.00 1/1 Woodworms



Task: SKO

Matchings

Maratona de Programação, Day 3. Available memory: 32 or 256 MB. 28.01.2015

In an undirected graph, a matching is a subset of the edges of the graph such that each vertex of the graph
is adjacent to at most one of the selected edges. The maximum matching is a matching of maximum possible
cardinality.

You are given a tree with n nodes. Your task is to find the size of the maximum matching and the number
of maximum matchings (the latter one modulo m).

Input

The first line of the input contains an integer n that specifies the number of nodes of the tree (1 ≤ n ≤

1 500 000). The nodes are numbered 1 through n. The following n − 1 lines contain a description of the tree
edges. Each of the lines contains two integers a and b that represent an edge connecting the nodes a and b

(1 ≤ a, b ≤ n). The last line of the input contains an integer m (1 ≤ m ≤ 109).

Output

The first line of the output should contain the cardinality of the maximum matching in the tree. The second
line should contain the number of maximum matchings modulo m.

Example

For the input data:

5

1 2

3 2

4 5

1 4

17

the correct result is:

2

3

1



Task: NEO

Neon

Maratona de Programação, Day 3. Available memory: 256 MB. 28.01.2015

Byteasar cannot sleep, because of the big neon sign which has been recently mounted opposite to his window.
On the neon there are two words which advertise a nearby cafe. Due to lack of sleep, strange ideas come to
Byteasar. He wonders how many possibilities there are to turn off some letters on the neon sign in such a way,
that the letters which are still on are arranged in both words in the same non-empty subsequence. He also
wonders how many such different subsequences one can get.

Input

In the first line of the input there is the first word of the neon sign, and in the second line there is the second
word. Both words are non-empty, consist of small letters of English alphabet and of length no greater that
10 000.

Output

On the output you have two write one line consisting of two integers separated by a single space. The should
denote respectively: the number of ways to turn off letters in the neon sign and the number of possible
subsequences. Both numbers should be written modulo 109 + 7.

Example

For the input data:

supermarket

stokrotka

the correct result is:

27 17

Explanation of the example: We can get 17 different subsequences (skt, sra, srk, srt and their shorter
subsequences) in 27 ways (e.g. we can obtain srk in two different ways).

1



Task: PRI

Prime numbers

Maratona de Programação, Day 3. Available memory: 32 MB. 28.01.2015

Professor Bytheon wants to explore the fascinating world of prime numbers. He asked you to write a program
which will calculate some values for him. The professor would like to know what is the sum of prime numbers
in the range [a, b] if we sum every m-th prime number from this range.

Input

In the first line of the input there are three integers a, b and m describing professor’s question (1 ≤ a ≤ b ≤ 108,
1 ≤ m ≤ 108).

Output

In the only line of the output you have to write the answer to the question.

Example

For the input data:

3 18 3

the correct result is:

14

Explanation of the example: In the range [3, 18] there are six prime numbers: 3, 5, 7, 11, 13 and 17.
Summing every third of them we get 3 + 11 = 14.

v. 1.0 1/1 Prime numbers


