
Su�x automaton lecture notes

Brazilian Summer Camp 2018

Mikhail Tikhomirov

January 27, 2018

Su�x automaton

Su�x automaton (SA/DAWG) a directed acyclic graph with a dedicated initial node v0, each arc is assigned with a single letter.
For a SA of a string s the paths starting at v0 are in one-to-one correspondence with substrings of s.

The right context rcs(v) of v with respect to s is a set of all strings t such that v + t is a su�x of s. In the minimal SA of s
each state corresponds to an equivalence class � all strings with the same value of rcs(v). If V is the largest string of a class,
then all other strings represent several largest su�xes of V . A su�x link of a state points to another state corresponding to the
largest su�x of V that lies in a di�erent state. We de�ne suf(v0) = −1, where −1 is a virtual auxiliary state.

Things we store in a state st of SA:
• Transitions for all letters st→ c (some of them may be unde�ned);
• The su�x link suf(st);
• The length of the largest string in the state len(st).

Algorithm

Let v∗ be the state corresponding to the whole string s in an SA of s. We want to append letter c: s→ s+ c. The algorithm:

1. Create the new vertex v∗′ for the string s+ c, put len(v∗′) = len(v∗) + 1.

2. Let v = v∗. While v 6= −1, and v → c is unde�ned:

(a) v → c := v∗′;
(b) v := suf(v)

3. If v = −1, set suf(v∗′) := v0 and �nish.

4. Now let u = v → c. If len(u) = len(v) + 1, then suf(v∗′) := u, and �nish.

5. Otherwise, create a new state u′ � a copy of u. Set:

(a) len(u′) := len(u) + 1;

(b) suf(v∗′) := u′;

(c) suf(u) := u′.

6. While v → c = u:

(a) v → c := u′;

(b) v := suf(v).

7. v∗ := v∗′. Finish.

Note that the algorithm never creates more than two new states per phase, hence the number of states in the SA of s is at
most 2|s|. In fact, the total number of transitions in the SA of s is at most 3|s|, and the complexity of this algorithm is O(|s|).

Example applications

• To check if t is a substring of s, just follow the path corresponding to t and see if all transitions exist.
• To count the number of occurences of t, note that the answer is the number of paths leading to v∗ from t. Since SA is an
acyclic graph, we can compute the number of paths with DP in O(|s|) time.

• The number of distinct substrings of s:

1. The number of distinct substrings of s is equal to the number of distinct paths in the SA of s which can be found
with DP.

2. Another approach: note that each state v of the SA of s contains exactly len(v)− len(suf(v)) distinct strings, hence
the sum of these values over all v is exactly the answer.

